These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 25101672)
1. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values. Camargos HS; Moreira RA; Mendanha SA; Fernandes KS; Dorta ML; Alonso A PLoS One; 2014; 9(8):e104429. PubMed ID: 25101672 [TBL] [Abstract][Full Text] [Related]
2. Effects of nerolidol and limonene on stratum corneum membranes: A probe EPR and fluorescence spectroscopy study. Mendanha SA; Marquezin CA; Ito AS; Alonso A Int J Pharm; 2017 Oct; 532(1):547-554. PubMed ID: 28935253 [TBL] [Abstract][Full Text] [Related]
3. In vitro antileishmanial and cytotoxic activities of nerolidol are associated with changes in plasma membrane dynamics. Alonso L; Fernandes KS; Mendanha SA; Gonçalves PJ; Gomes RS; Dorta ML; Alonso A Biochim Biophys Acta Biomembr; 2019 Jun; 1861(6):1049-1056. PubMed ID: 30890467 [TBL] [Abstract][Full Text] [Related]
4. Miltefosine increases lipid and protein dynamics in Leishmania amazonensis membranes at concentrations similar to those needed for cytotoxicity activity. Moreira RA; Mendanha SA; Fernandes KS; Matos GG; Alonso L; Dorta ML; Alonso A Antimicrob Agents Chemother; 2014 Jun; 58(6):3021-8. PubMed ID: 24614380 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity. Mendanha SA; Moura SS; Anjos JL; Valadares MC; Alonso A Toxicol In Vitro; 2013 Feb; 27(1):323-9. PubMed ID: 22944593 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Arruda DC; Miguel DC; Yokoyama-Yasunaka JK; Katzin AM; Uliana SR Biomed Pharmacother; 2009 Nov; 63(9):643-9. PubMed ID: 19321295 [TBL] [Abstract][Full Text] [Related]
7. Antileishmanial activity of the chalcone derivative LQFM064 associated with reduced fluidity in the parasite membrane as assessed by EPR spectroscopy. Alonso L; Menegatti R; Gomes RS; Dorta ML; Luzin RM; Lião LM; Alonso A Eur J Pharm Sci; 2020 Aug; 151():105407. PubMed ID: 32504805 [TBL] [Abstract][Full Text] [Related]
8. Effect of citral, eugenol, nerolidol and alpha-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Park MJ; Gwak KS; Yang I; Kim KW; Jeung EB; Chang JW; Choi IG Fitoterapia; 2009 Jul; 80(5):290-6. PubMed ID: 19345255 [TBL] [Abstract][Full Text] [Related]
9. Comparative EPR spectroscopy analysis of amphotericin B and miltefosine interactions with Leishmania, erythrocyte and macrophage membranes. Alonso L; Mendanha SA; Gomes RS; Dorta ML; Alonso A Eur J Pharm Sci; 2021 Aug; 163():105859. PubMed ID: 33894283 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of ascaridole activation in Leishmania. Geroldinger G; Tonner M; Hettegger H; Bacher M; Monzote L; Walter M; Staniek K; Rosenau T; Gille L Biochem Pharmacol; 2017 May; 132():48-62. PubMed ID: 28263719 [TBL] [Abstract][Full Text] [Related]
11. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Pontin M; Bottini R; Burba JL; Piccoli P Phytochemistry; 2015 Jul; 115():152-60. PubMed ID: 25819001 [TBL] [Abstract][Full Text] [Related]
12. The cytotoxic activity of miltefosine against Leishmania and macrophages is associated with dynamic changes in plasma membrane proteins. Fernandes KS; de Souza PE; Dorta ML; Alonso A Biochim Biophys Acta Biomembr; 2017 Jan; 1859(1):1-9. PubMed ID: 27773565 [TBL] [Abstract][Full Text] [Related]
13. Mycobacterium abscessus cell wall and plasma membrane characterization by EPR spectroscopy and effects of amphotericin B, miltefosine and nerolidol. Alonso L; Pimenta LKL; Kipnis A; Alonso A Biochim Biophys Acta Biomembr; 2022 May; 1864(5):183872. PubMed ID: 35085568 [TBL] [Abstract][Full Text] [Related]
14. Antileishmanial and cytotoxic activities of ionic surfactants compared to those of miltefosine. Alonso L; Cardoso ÉJS; Gomes RS; Mendanha SA; Dorta ML; Alonso A Colloids Surf B Biointerfaces; 2019 Nov; 183():110421. PubMed ID: 31401463 [TBL] [Abstract][Full Text] [Related]
15. Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. Britta EA; Scariot DB; Falzirolli H; Ueda-Nakamura T; Silva CC; Filho BP; Borsali R; Nakamura CV BMC Microbiol; 2014 Sep; 14():236. PubMed ID: 25253283 [TBL] [Abstract][Full Text] [Related]
16. Plasma membrane rigidity effects of 4-hydroxy-2-nonenal in Leishmania, erythrocyte and macrophage. Alonso L; Menegatti R; Dorta ML; Alonso A Toxicol In Vitro; 2022 Mar; 79():105294. PubMed ID: 34896601 [TBL] [Abstract][Full Text] [Related]
17. Ivermectin and curcumin cause plasma membrane rigidity in Leishmania amazonensis due to oxidative stress. Alonso L; Dorta ML; Alonso A Biochim Biophys Acta Biomembr; 2022 Sep; 1864(9):183977. PubMed ID: 35654148 [TBL] [Abstract][Full Text] [Related]
18. Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants. Liu CH; Chang FY; Hung DK Colloids Surf B Biointerfaces; 2011 Jan; 82(1):63-70. PubMed ID: 20828994 [TBL] [Abstract][Full Text] [Related]
19. Membrane dynamics in Leishmania amazonensis and antileishmanial activities of β-carboline derivatives. Alonso L; de Paula JC; Baréa P; Sarragiotto MH; Ueda-Nakamura T; Alonso A; de Souza Fernandes N; Lancheros CAC; Volpato H; Lazarin-Bidóia D; Nakamura CV Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183473. PubMed ID: 32937102 [TBL] [Abstract][Full Text] [Related]
20. Terpene penetration enhancers in propylene glycol/water co-solvent systems: effectiveness and mechanism of action. Yamane MA; Williams AC; Barry BW J Pharm Pharmacol; 1995 Dec; 47(12A):978-89. PubMed ID: 8932680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]