BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25101702)

  • 1. Oligodendrocyte gap junction loss and disconnection from reactive astrocytes in multiple sclerosis gray matter.
    Markoullis K; Sargiannidou I; Schiza N; Roncaroli F; Reynolds R; Kleopa KA
    J Neuropathol Exp Neurol; 2014 Sep; 73(9):865-79. PubMed ID: 25101702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins.
    Orthmann-Murphy JL; Freidin M; Fischer E; Scherer SS; Abrams CK
    J Neurosci; 2007 Dec; 27(51):13949-57. PubMed ID: 18094232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling.
    Wasseff SK; Scherer SS
    Neurobiol Dis; 2011 Jun; 42(3):506-13. PubMed ID: 21396451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered Expression of Glial Gap Junction Proteins Cx43, Cx30, and Cx47 in the 5XFAD Model of Alzheimer's Disease.
    Angeli S; Kousiappa I; Stavrou M; Sargiannidou I; Georgiou E; Papacostas SS; Kleopa KA
    Front Neurosci; 2020; 14():582934. PubMed ID: 33117125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap junctions couple astrocytes and oligodendrocytes.
    Orthmann-Murphy JL; Abrams CK; Scherer SS
    J Mol Neurosci; 2008 May; 35(1):101-16. PubMed ID: 18236012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Y‒linked biomarkers and exploration of immune infiltration of normal-appearing gray matter in multiple sclerosis by bioinformatic analysis.
    Zhang S; Zhang M; Zhang L; Wang Z; Tang S; Yang X; Li Z; Feng J; Qin X
    Heliyon; 2024 Mar; 10(6):e28085. PubMed ID: 38515685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Un-BAFFling gray matter pathology in multiple sclerosis.
    Ford-Roshon D; Mendiola AS
    Sci Immunol; 2024 Apr; 9(94):eadp4667. PubMed ID: 38579016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination.
    Wegener A; Deboux C; Bachelin C; Frah M; Kerninon C; Seilhean D; Weider M; Wegner M; Nait-Oumesmar B
    Brain; 2015 Jan; 138(Pt 1):120-35. PubMed ID: 25564492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligodendroglial Development: New Roles for Chromatin Accessibility.
    Huang N; Niu J; Feng Y; Xiao L
    Neuroscientist; 2015 Dec; 21(6):579-88. PubMed ID: 25564030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase.
    Pedraza CE; Taylor C; Pereira A; Seng M; Tham CS; Izrael M; Webb M
    ASN Neuro; 2014 Jun; 6(4):. PubMed ID: 25289646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal activity and AMPA-type glutamate receptor activation regulates the morphological development of oligodendrocyte precursor cells.
    Fannon J; Tarmier W; Fulton D
    Glia; 2015 Jun; 63(6):1021-35. PubMed ID: 25739948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myelin, myelin-related disorders, and psychosis.
    Mighdoll MI; Tao R; Kleinman JE; Hyde TM
    Schizophr Res; 2015 Jan; 161(1):85-93. PubMed ID: 25449713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligodendrocyte Lineage Cells in Chronic Demyelination of Multiple Sclerosis Optic Nerve.
    Jennings AR; Carroll WM
    Brain Pathol; 2015 Sep; 25(5):517-30. PubMed ID: 25175564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The central role of mitochondria in axonal degeneration in multiple sclerosis.
    Campbell GR; Worrall JT; Mahad DJ
    Mult Scler; 2014 Dec; 20(14):1806-13. PubMed ID: 25122475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells.
    Kaneko Y; Tachikawa M; Akaogi R; Fujimoto K; Ishibashi M; Uchida Y; Couraud PO; Ohtsuki S; Hosoya K; Terasaki T
    J Pharmacol Exp Ther; 2015 Apr; 353(1):192-200. PubMed ID: 25670633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration.
    Moyon S; Dubessy AL; Aigrot MS; Trotter M; Huang JK; Dauphinot L; Potier MC; Kerninon C; Melik Parsadaniantz S; Franklin RJ; Lubetzki C
    J Neurosci; 2015 Jan; 35(1):4-20. PubMed ID: 25568099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organotypic slice cultures to study oligodendrocyte dynamics and myelination.
    Hill RA; Medved J; Patel KD; Nishiyama A
    J Vis Exp; 2014 Aug; (90):e51835. PubMed ID: 25177825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development.
    Ben-Nun A; Kaushansky N; Kawakami N; Krishnamoorthy G; Berer K; Liblau R; Hohlfeld R; Wekerle H
    J Autoimmun; 2014 Nov; 54():33-50. PubMed ID: 25175979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The EIIIA domain from astrocyte-derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination.
    Stoffels JM; Hoekstra D; Franklin RJ; Baron W; Zhao C
    Glia; 2015 Feb; 63(2):242-56. PubMed ID: 25156142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroantigen-specific autoregulatory CD8+ T cells inhibit autoimmune demyelination through modulation of dendritic cell function.
    Kashi VP; Ortega SB; Karandikar NJ
    PLoS One; 2014; 9(8):e105763. PubMed ID: 25144738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.