BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 2510194)

  • 1. [Variations of carotid flow at altitude and during modifications of respiratory conditions].
    Bailliart D; Normand H; Bonnin P; Savin E; Raynaud J; Martineaud JP
    Physiologie; 1989; 26(2):81-93. PubMed ID: 2510194
    [No Abstract]   [Full Text] [Related]  

  • 2. [Changes in the blood flow of the primary carotid and its branches during modifications of the O2 and CO2 composition of alveolar gas].
    Bailliart O; Marotte H; Normand H; Martineaud JP; Durand J
    Arch Int Physiol Biochim; 1990 Aug; 98(4):179-92. PubMed ID: 1707614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving sleep at altitude: a comparison of therapies.
    Rodway GW; Edsell ME; Wong B; Windsor JS;
    Wilderness Environ Med; 2011 Dec; 22(4):316-20. PubMed ID: 21982758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critique of 'control of arterial Pco2 by somatic afferents'.
    Yu Y; Poon CS
    J Physiol; 2006 May; 572(Pt 3):897-8; author reply 899-900. PubMed ID: 16850549
    [No Abstract]   [Full Text] [Related]  

  • 5. Headache at high altitude is not related to internal carotid arterial blood velocity.
    Reeves JT; Moore LG; McCullough RE; McCullough RG; Harrison G; Tranmer BI; Micco AJ; Tucker A; Weil JV
    J Appl Physiol (1985); 1985 Sep; 59(3):909-15. PubMed ID: 2932420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of head-down tilt on carotid blood flow and pulmonary gas exchange.
    Loeppky JA; Hirshfield DW; Eldridge MW
    Aviat Space Environ Med; 1987 Jul; 58(7):637-44. PubMed ID: 3113416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous measurement of gas uptake and elimination in anesthetized patients using an extractable marker gas.
    Robinson GJ; Peyton PJ; Terry D; Malekzadeh S; Thompson B
    J Appl Physiol (1985); 2004 Sep; 97(3):960-6. PubMed ID: 15333627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood flow velocity in the middle cerebral artery during carotid cross-clamping: loss of regulatory response to carbon dioxide partial pressure. A transcranial Doppler intraoperative study.
    Faccenda F; Spencer MP; Thomas GI; Nicholls SC
    Artery; 1990; 17(3):159-69. PubMed ID: 2110808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of 2% carbon dioxide, 0.5% carbon dioxide, and 100% oxygen on cranial blood flow of the human neonate.
    Rahilly PM
    Pediatrics; 1980 Nov; 66(5):685-9. PubMed ID: 6776475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: reproducibility and gender differences.
    Kassner A; Winter JD; Poublanc J; Mikulis DJ; Crawley AP
    J Magn Reson Imaging; 2010 Feb; 31(2):298-304. PubMed ID: 20099341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary capacity for dissipation of venous gas emboli.
    Spencer MP; Oyama Y
    Aerosp Med; 1971 Aug; 42(8):822-7. PubMed ID: 5098572
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of oxygen and carbon dioxide on human retinal circulation: an investigation using blue field simulation and scanning laser ophthalmoscopy.
    Tomic L; Bjärnhall G; Mäepea O; Sperber GO; Alm A
    Acta Ophthalmol Scand; 2005 Dec; 83(6):705-10. PubMed ID: 16396648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of arterial bloodgases at altitude using constant-flow oxygen masks.
    Hodgson WR; Wright RC; Nelson GC; Letchford T
    Aviat Space Environ Med; 1978 Jun; 49(6):829-36. PubMed ID: 656012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of breathing air containing 3% carbon dioxide, 35% oxygen or a mixture of 3% carbon dioxide/35% oxygen on cerebral and peripheral oxygenation at 150 m and 3459 m.
    Imray CH; Walsh S; Clarke T; Tiivas C; Hoar H; Harvey TC; Chan CW; Forster PJ; Bradwell AR; Wright AD;
    Clin Sci (Lond); 2003 Mar; 104(3):203-10. PubMed ID: 12605573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Capillary blood gas test usefulness to evaluate gas exchange with 21% and 100% of oxygen inspired fractions in subjects with stable cardiopulmonary disease at 2,240 meters above sea level].
    Santos-Martínez LE; Martínez-Guerra ML; Duran A; Rodríguez F; Gotés J; Roquet I; López LA; Pulido A; Lupi E; Bautista E; Pulido T; Sandoval J
    Arch Cardiol Mex; 2009; 79(1):18-26. PubMed ID: 19545070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral oxygenation at high altitude and the response to carbon dioxide, hyperventilation and oxygen. The Birmingham Medical Research Expeditionary Society.
    Imray CH; Brearey S; Clarke T; Hale D; Morgan J; Walsh S; Wright AD
    Clin Sci (Lond); 2000 Feb; 98(2):159-64. PubMed ID: 10657270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep hypoventilation due to increased nocturnal oxygen flow in hypercapnic COPD patients.
    Samolski D; Tárrega J; Antón A; Mayos M; Martí S; Farrero E; Güell R
    Respirology; 2010 Feb; 15(2):283-8. PubMed ID: 19947986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The highs and lows of gas exchange during sleep.
    Piper AJ
    Respirology; 2010 Feb; 15(2):191-3. PubMed ID: 20199639
    [No Abstract]   [Full Text] [Related]  

  • 19. Ventilatory equivalents for carbon dioxide and oxygen are measures of ventilatory efficiency and not of pulmonary gas exchange efficiency.
    Tharion E; Subramani S
    Exp Physiol; 2011 Jul; 96(7):708. PubMed ID: 21724737
    [No Abstract]   [Full Text] [Related]  

  • 20. Carotid baroreflex regulation of vascular resistance in high-altitude Andean natives with and without chronic mountain sickness.
    Moore JP; Claydon VE; Norcliffe LJ; Rivera-Ch MC; Lèon-Velarde F; Appenzeller O; Hainsworth R
    Exp Physiol; 2006 Sep; 91(5):907-13. PubMed ID: 16763007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.