These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25101962)

  • 1. The response to high CO2 levels requires the neuropeptide secretion component HID-1 to promote pumping inhibition.
    Sharabi K; Charar C; Friedman N; Mizrahi I; Zaslaver A; Sznajder JI; Gruenbaum Y
    PLoS Genet; 2014 Aug; 10(8):e1004529. PubMed ID: 25101962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharyngeal pumping inhibition and avoidance by acute exposure to high CO2 levels are both regulated by the BAG neurons via different molecular pathways.
    Sharabi K; Charar C; Gruenbaum Y
    Worm; 2015; 4(1):e1008898. PubMed ID: 26430557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HID-1, a new component of the peptidergic signaling pathway.
    Mesa R; Luo S; Hoover CM; Miller K; Minniti A; Inestrosa N; Nonet ML
    Genetics; 2011 Feb; 187(2):467-83. PubMed ID: 21115972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans.
    Gramstrup Petersen J; Rojo Romanos T; Juozaityte V; Redo Riveiro A; Hums I; Traunmüller L; Zimmer M; Pocock R
    PLoS Genet; 2013 May; 9(5):e1003511. PubMed ID: 23671427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel CaM kinase II pathway controls the location of neuropeptide release from Caenorhabditis elegans motor neurons.
    Hoover CM; Edwards SL; Yu SC; Kittelmann M; Richmond JE; Eimer S; Yorks RM; Miller KG
    Genetics; 2014 Mar; 196(3):745-65. PubMed ID: 24653209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.
    Bretscher AJ; Busch KE; de Bono M
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8044-9. PubMed ID: 18524954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O2-sensing neurons control CO2 response in C. elegans.
    Carrillo MA; Guillermin ML; Rengarajan S; Okubo RP; Hallem EA
    J Neurosci; 2013 Jun; 33(23):9675-83. PubMed ID: 23739964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute carbon dioxide avoidance in Caenorhabditis elegans.
    Hallem EA; Sternberg PW
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8038-43. PubMed ID: 18524955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuropeptide signaling regulates the susceptibility of developing C. elegans to anoxia.
    Doshi S; Price E; Landis J; Barot U; Sabatella M; Lans H; Kalb RG
    Free Radic Biol Med; 2019 Feb; 131():197-208. PubMed ID: 30529384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel role for the zinc-finger transcription factor EGL-46 in the differentiation of gas-sensing neurons in Caenorhabditis elegans.
    Rojo Romanos T; Petersen JG; Riveiro AR; Pocock R
    Genetics; 2015 Jan; 199(1):157-63. PubMed ID: 25395666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of carbon dioxide-sensing neurons in Caenorhabditis elegans requires the ETS-5 transcription factor.
    Guillermin ML; Castelletto ML; Hallem EA
    Genetics; 2011 Dec; 189(4):1327-39. PubMed ID: 21954162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chemoreceptor that detects molecular carbon dioxide.
    Smith ES; Martinez-Velazquez L; Ringstad N
    J Biol Chem; 2013 Dec; 288(52):37071-81. PubMed ID: 24240097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system.
    Trojanowski NF; Raizen DM; Fang-Yen C
    Sci Rep; 2016 Mar; 6():22940. PubMed ID: 26976078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity.
    Fenk LA; de Bono M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3525-34. PubMed ID: 26100886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a role for cyclic AMP in modulating the action of 5-HT and an excitatory neuropeptide, FLP17A, in the pharyngeal muscle of Caenorhabditis elegans.
    Papaioannou S; Holden-Dye L; Walker RJ
    Invert Neurosci; 2008 Jun; 8(2):91-100. PubMed ID: 18463910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The actions of Caenorhabditis elegans neuropeptide-like peptides (NLPs) on body wall muscle of Ascaris suum and pharyngeal muscle of C. elegans.
    Papaioannou S; Holden-Dye L; Walker RJ
    Acta Biol Hung; 2008; 59 Suppl():189-97. PubMed ID: 18652392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the synaptotagmin/stonin2 system in vesicular transport regulated by semaphorins in Caenorhabditis elegans epidermal cells.
    Tanaka H; Kanatome A; Takagi S
    Genes Cells; 2020 Jun; 25(6):391-401. PubMed ID: 32167217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the effects of high CO₂ levels in Caenorhabditis elegans.
    Zuela N; Friedman N; Zaslaver A; Gruenbaum Y
    Methods; 2014 Aug; 68(3):487-91. PubMed ID: 24650565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperactivation of the G12-mediated signaling pathway in Caenorhabditis elegans induces a developmental growth arrest via protein kinase C.
    van der Linden AM; Moorman C; Cuppen E; Korswagen HC; Plasterk RH
    Curr Biol; 2003 Mar; 13(6):516-21. PubMed ID: 12646136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UNC-18 and Tomosyn Antagonistically Control Synaptic Vesicle Priming Downstream of UNC-13 in
    Park S; Bin NR; Yu B; Wong R; Sitarska E; Sugita K; Ma K; Xu J; Tien CW; Algouneh A; Turlova E; Wang S; Siriya P; Shahid W; Kalia L; Feng ZP; Monnier PP; Sun HS; Zhen M; Gao S; Rizo J; Sugita S
    J Neurosci; 2017 Sep; 37(36):8797-8815. PubMed ID: 28821673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.