BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25102115)

  • 1. Kinetic and thermodynamic evaluation of phosphate ions binding onto sevelamer hydrochloride.
    Elsiddig R; Hughes H; Owens E; O' Reilly NJ; O'Grady D; McLoughlin P
    Int J Pharm; 2014 Oct; 474(1-2):25-32. PubMed ID: 25102115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel dosage forms and regimens for sevelamer-based phosphate binders.
    Duggal A; Hanus M; Zhorov E; Dagher R; Plone MA; Goldberg J; Burke SK
    J Ren Nutr; 2006 Jul; 16(3):248-52. PubMed ID: 16825030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption kinetic and thermodynamic studies of phosphate onto tantalum hydroxide.
    Yu SH; Dong XL; Gong H; Jiang H; Liu ZG
    Water Environ Res; 2012 Dec; 84(12):2115-22. PubMed ID: 23342943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay.
    Unuabonah EI; Adebowale KO; Olu-Owolabi BI
    J Hazard Mater; 2007 Jun; 144(1-2):386-95. PubMed ID: 17156914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II) ions onto the seed husk of Calophyllum inophyllum.
    Lawal OS; Sanni AR; Ajayi IA; Rabiu OO
    J Hazard Mater; 2010 May; 177(1-3):829-35. PubMed ID: 20083344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of fluoride ions from aqueous solution by waste mud.
    Kemer B; Ozdes D; Gundogdu A; Bulut VN; Duran C; Soylak M
    J Hazard Mater; 2009 Sep; 168(2-3):888-94. PubMed ID: 19327886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption potentials of a novel green biosorbent Saccharum bengalense containing cellulose as carbohydrate polymer for removal of Ni (II) ions from aqueous solutions.
    Din MI; Mirza ML
    Int J Biol Macromol; 2013 Mar; 54():99-108. PubMed ID: 23219872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal removal from aqueous solutions by activated phosphate rock.
    Elouear Z; Bouzid J; Boujelben N; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Aug; 156(1-3):412-20. PubMed ID: 18242833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of lead from aqueous solutions by activated phosphate.
    Mouflih M; Aklil A; Sebti S
    J Hazard Mater; 2005 Mar; 119(1-3):183-8. PubMed ID: 15752864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of morbidity and mortality data related to cardiovascular calcification from calcium-containing phosphate binder use in patients undergoing hemodialysis.
    Mason MA; Shepler BM
    Pharmacotherapy; 2010 Jul; 30(7):741-8. PubMed ID: 20575637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions.
    Unlü N; Ersoz M
    J Hazard Mater; 2006 Aug; 136(2):272-80. PubMed ID: 16442227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative in vitro efficacy of the phosphate binders lanthanum carbonate and sevelamer hydrochloride.
    Autissier V; Damment SJ; Henderson RA
    J Pharm Sci; 2007 Oct; 96(10):2818-27. PubMed ID: 17497733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phosphate binding assay for sevelamer hydrochloride by ion chromatography.
    Mazzeo JR; Peters RM; Hanus MR; Chen X; Norton KA
    J Pharm Biomed Anal; 1999 May; 19(6):911-5. PubMed ID: 10698557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endotoxin-binding affinity of sevelamer hydrochloride.
    Perianayagam MC; Jaber BL
    Am J Nephrol; 2008; 28(5):802-7. PubMed ID: 18506105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption optimization of lead (II) using Saccharum bengalense as a non-conventional low cost biosorbent: isotherm and thermodynamics modeling.
    Din MI; Hussain Z; Mirza ML; Shah AT; Athar MM
    Int J Phytoremediation; 2014; 16(7-12):889-908. PubMed ID: 24933891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay.
    Ozdes D; Duran C; Senturk HB
    J Environ Manage; 2011 Dec; 92(12):3082-90. PubMed ID: 21856065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles.
    Boparai HK; Joseph M; O'Carroll DM
    J Hazard Mater; 2011 Feb; 186(1):458-65. PubMed ID: 21130566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay.
    Sari A; Tuzen M; Citak D; Soylak M
    J Hazard Mater; 2007 Oct; 149(2):283-91. PubMed ID: 17478040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange.
    Yu Z; Qi T; Qu J; Wang L; Chu J
    J Hazard Mater; 2009 Aug; 167(1-3):406-12. PubMed ID: 19203833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.
    Ozdes D; Gundogdu A; Kemer B; Duran C; Senturk HB; Soylak M
    J Hazard Mater; 2009 Jul; 166(2-3):1480-7. PubMed ID: 19167162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.