BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25102160)

  • 1. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes.
    Iwai K; Shih KC; Lin X; Brubaker TA; Sochol RD; Lin L
    Lab Chip; 2014 Oct; 14(19):3790-9. PubMed ID: 25102160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.
    Kokalj T; Park Y; Vencelj M; Jenko M; Lee LP
    Lab Chip; 2014 Nov; 14(22):4329-33. PubMed ID: 25231831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actuation of elastomeric microvalves in point-of-care settings using handheld, battery-powered instrumentation.
    Addae-Mensah KA; Cheung YK; Fekete V; Rendely MS; Sia SK
    Lab Chip; 2010 Jun; 10(12):1618-22. PubMed ID: 20383403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing.
    Sochol RD; Li S; Lee LP; Lin L
    Lab Chip; 2012 Oct; 12(20):4168-77. PubMed ID: 22875202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation.
    Peng C; Zhang Z; Kim CJ; Ju YS
    Lab Chip; 2014 Mar; 14(6):1117-22. PubMed ID: 24452784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A micro-spherical heart pump powered by cultured cardiomyocytes.
    Tanaka Y; Sato K; Shimizu T; Yamato M; Okano T; Kitamori T
    Lab Chip; 2007 Feb; 7(2):207-12. PubMed ID: 17268623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finger-powered fluidic actuation and mixing via MultiJet 3D printing.
    Sweet E; Mehta R; Xu Y; Jew R; Lin R; Lin L
    Lab Chip; 2020 Sep; 20(18):3375-3385. PubMed ID: 32766613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finger-actuated microfluidic device for the blood cross-matching test.
    Park J; Park JK
    Lab Chip; 2018 Apr; 18(8):1215-1222. PubMed ID: 29589005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.
    Devaraju NS; Unger MA
    Lab Chip; 2012 Nov; 12(22):4809-15. PubMed ID: 23000861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastic masters-rigid templates for soft lithography.
    Desai SP; Freeman DM; Voldman J
    Lab Chip; 2009 Jun; 9(11):1631-7. PubMed ID: 19458873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuel cell-powered microfluidic platform for lab-on-a-chip applications.
    Esquivel JP; Castellarnau M; Senn T; Löchel B; Samitier J; Sabaté N
    Lab Chip; 2012 Jan; 12(1):74-9. PubMed ID: 22072241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of sequential fluid delivery in a fully autonomous capillary microfluidic device.
    Novo P; Volpetti F; Chu V; Conde JP
    Lab Chip; 2013 Feb; 13(4):641-5. PubMed ID: 23263650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture: Part 1 Design and feasibility.
    Rajta I; Huszánk R; Szabó AT; Nagy GU; Szilasi S; Fürjes P; Holczer E; Fekete Z; Járvás G; Szigeti M; Hajba L; Bodnár J; Guttman A
    Electrophoresis; 2016 Feb; 37(3):498-503. PubMed ID: 26105661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.
    Begolo S; Zhukov DV; Selck DA; Li L; Ismagilov RF
    Lab Chip; 2014 Dec; 14(24):4616-28. PubMed ID: 25231706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.