These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 25102226)

  • 1. Blind predictions of DNA and RNA tweezers experiments with force and torque.
    Chou FC; Lipfert J; Das R
    PLoS Comput Biol; 2014 Aug; 10(8):e1003756. PubMed ID: 25102226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA.
    Lipfert J; Skinner GM; Keegstra JM; Hensgens T; Jager T; Dulin D; Köber M; Yu Z; Donkers SP; Chou FC; Das R; Dekker NH
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15408-13. PubMed ID: 25313077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers.
    Kriegel F; Ermann N; Lipfert J
    J Struct Biol; 2017 Jan; 197(1):26-36. PubMed ID: 27368129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics.
    Marin-Gonzalez A; Vilhena JG; Perez R; Moreno-Herrero F
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7049-7054. PubMed ID: 28634300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.
    Bao L; Zhang X; Shi YZ; Wu YY; Tan ZJ
    Biophys J; 2017 Mar; 112(6):1094-1104. PubMed ID: 28355538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis.
    Liebl K; Drsata T; Lankas F; Lipfert J; Zacharias M
    Nucleic Acids Res; 2015 Dec; 43(21):10143-56. PubMed ID: 26464435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale structures and mechanics of peptide nucleic acids.
    Chhetri KB; Sharma A; Naskar S; Maiti PK
    Nanoscale; 2022 May; 14(17):6620-6635. PubMed ID: 35421892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twist-Bend Coupling and the Torsional Response of Double-Stranded DNA.
    Nomidis SK; Kriegel F; Vanderlinden W; Lipfert J; Carlon E
    Phys Rev Lett; 2017 May; 118(21):217801. PubMed ID: 28598642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ethanol on the elasticities of double-stranded RNA and DNA revealed by magnetic tweezers and simulations.
    Zheng CC; Chen YL; Dong HL; Zhang XH; Tan ZJ
    J Chem Phys; 2024 Aug; 161(7):. PubMed ID: 39145565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level.
    Herrero-Galán E; Fuentes-Perez ME; Carrasco C; Valpuesta JM; Carrascosa JL; Moreno-Herrero F; Arias-Gonzalez JR
    J Am Chem Soc; 2013 Jan; 135(1):122-31. PubMed ID: 23214411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations.
    Dong HL; Zhang C; Dai L; Zhang Y; Zhang XH; Tan ZJ
    Nucleic Acids Res; 2024 Mar; 52(5):2519-2529. PubMed ID: 38321947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remarkable similarity of force induced dsRNA conformational changes to stretched dsDNA and their detection using electrical measurements.
    Aggarwal A; Bag S; Maiti PK
    Phys Chem Chem Phys; 2018 Nov; 20(45):28920-28928. PubMed ID: 30422138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Torque transfer coefficient in DNA under torsional stress.
    Mazur AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011914. PubMed ID: 23005459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers.
    Kriegel F; Ermann N; Forbes R; Dulin D; Dekker NH; Lipfert J
    Nucleic Acids Res; 2017 Jun; 45(10):5920-5929. PubMed ID: 28460037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical mechanics of ribbons under bending and twisting torques.
    Sinha S; Samuel J
    J Phys Condens Matter; 2013 Nov; 25(46):465102. PubMed ID: 24113491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overstretching partially alkyne functionalized dsDNA using near infrared optical tweezers.
    Raudsepp A; Kent LM; Hall SB; Williams MAK
    Biochem Biophys Res Commun; 2018 Feb; 496(3):975-980. PubMed ID: 29339160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield fabrication of DNA and RNA constructs for single molecule force and torque spectroscopy experiments.
    Papini FS; Seifert M; Dulin D
    Nucleic Acids Res; 2019 Dec; 47(22):e144. PubMed ID: 31584079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-dependent mechanical properties of double-stranded RNA.
    Marin-Gonzalez A; Vilhena JG; Moreno-Herrero F; Perez R
    Nanoscale; 2019 Nov; 11(44):21471-21478. PubMed ID: 31686065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A benchmark data set for the mechanical properties of double-stranded DNA and RNA under torsional constraint.
    Vanderlinden W; Kolbeck PJ; Kriegel F; Walker PU; Lipfert J
    Data Brief; 2020 Jun; 30():105404. PubMed ID: 32309523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical transition in a highly stretched and torsionally constrained DNA.
    Strzelecki J; Peplowski L; Lenartowski R; Nowak W; Balter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020701. PubMed ID: 25353406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.