BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 25102236)

  • 1. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems.
    Hummel W; Gröger H
    J Biotechnol; 2014 Dec; 191():22-31. PubMed ID: 25102236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds.
    Weckbecker A; Gröger H; Hummel W
    Adv Biochem Eng Biotechnol; 2010; 120():195-242. PubMed ID: 20182929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8.
    Fogal S; Beneventi E; Cendron L; Bergantino E
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9541-54. PubMed ID: 26104866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.
    Marpani F; Sárossy Z; Pinelo M; Meyer AS
    Biotechnol Bioeng; 2017 Dec; 114(12):2762-2770. PubMed ID: 28832942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-immobilized Phosphorylated Cofactors and Enzymes as Self-Sufficient Heterogeneous Biocatalysts for Chemical Processes.
    Velasco-Lozano S; Benítez-Mateos AI; López-Gallego F
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):771-775. PubMed ID: 28000978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.
    Kirmair L; Seiler DL; Skerra A
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10501-13. PubMed ID: 26329849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards catalyst compartimentation in combined chemo- and biocatalytic processes: immobilization of alcohol dehydrogenases for the diastereoselective reduction of a β-hydroxy ketone obtained from an organocatalytic aldol reaction.
    Rulli G; Heidlindemann M; Berkessel A; Hummel W; Gröger H
    J Biotechnol; 2013 Nov; 168(3):271-6. PubMed ID: 24036136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins.
    Hölsch K; Weuster-Botz D
    Biotechnol Appl Biochem; 2010 Aug; 56(4):131-40. PubMed ID: 20590527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles.
    Zheng M; Su Z; Ji X; Ma G; Wang P; Zhang S
    J Biotechnol; 2013 Oct; 168(2):212-7. PubMed ID: 23756150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coenzyme regeneration in hexanol oxidation catalyzed by alcohol dehydrogenase.
    Vrsalović Presečki A; Makovšek K; Vasić-Rački Đ
    Appl Biochem Biotechnol; 2012 Jun; 167(3):595-611. PubMed ID: 22581078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols.
    Kroutil W; Mang H; Edegger K; Faber K
    Curr Opin Chem Biol; 2004 Apr; 8(2):120-6. PubMed ID: 15062771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic redox cofactor regeneration in organic media: functionalization and application of glycerol dehydrogenase and soluble transhydrogenase in reverse micelles.
    Ichinose H; Kamiya N; Goto M
    Biotechnol Prog; 2005; 21(4):1192-7. PubMed ID: 16080701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle-tethered NAD(+) with in situ cofactor regeneration.
    Li Y; Liang H; Sun L; Wu J; Yuan Q
    Biotechnol Lett; 2013 Jun; 35(6):915-9. PubMed ID: 23417259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration.
    Braun M; Link H; Liu L; Schmid RD; Weuster-Botz D
    Biotechnol Bioeng; 2011 Jun; 108(6):1307-17. PubMed ID: 21192000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light.
    Emmanuel MA; Greenberg NR; Oblinsky DG; Hyster TK
    Nature; 2016 Dec; 540(7633):414-417. PubMed ID: 27974767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors.
    Jia Q; Zheng YC; Li HP; Qian XL; Zhang ZJ; Xu JH
    Appl Environ Microbiol; 2022 May; 88(9):e0034122. PubMed ID: 35442081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.
    Knaus T; Paul CE; Levy CW; de Vries S; Mutti FG; Hollmann F; Scrutton NS
    J Am Chem Soc; 2016 Jan; 138(3):1033-9. PubMed ID: 26727612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled reactions on bioparticles: Stereoselective reduction with cofactor regeneration on PhaC inclusion bodies.
    Spieler V; Valldorf B; Maaß F; Kleinschek A; Hüttenhain SH; Kolmar H
    Biotechnol J; 2016 Jul; 11(7):890-8. PubMed ID: 26901842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.