These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25102324)

  • 61. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips.
    Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP
    Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Medial olivocochlear reflex effects on amplitude growth functions of long- and short-latency components of click-evoked otoacoustic emissions in humans.
    Goodman SS; Boothalingam S; Lichtenhan JT
    J Neurophysiol; 2021 May; 125(5):1938-1953. PubMed ID: 33625926
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans.
    Bhatt I
    PLoS One; 2017; 12(9):e0184036. PubMed ID: 28886123
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system.
    Christopher Kirk E; Smith DW
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):445-65. PubMed ID: 12784134
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of Type 2 Diabetes on Otoacoustic Emissions and the Medial Olivocochlear Reflex.
    Eren E; Harman E; Arslanoğlu S; Önal K
    Otolaryngol Head Neck Surg; 2014 Jun; 150(6):1033-9. PubMed ID: 24671462
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Otoacoustic emissions and medial olivocochlear suppression during auditory recovery from acoustic trauma in humans.
    Veuillet E; Martin V; Suc B; Vesson JF; Morgon A; Collet L
    Acta Otolaryngol; 2001 Jan; 121(2):278-83. PubMed ID: 11349796
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Single olivocochlear neurons in the guinea pig. II. Response plasticity due to noise conditioning.
    Brown MC; Kujawa SG; Liberman MC
    J Neurophysiol; 1998 Jun; 79(6):3088-97. PubMed ID: 9636110
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Contralateral Inhibition of Click- and Chirp-Evoked Human Compound Action Potentials.
    Smith SB; Lichtenhan JT; Cone BK
    Front Neurosci; 2017; 11():189. PubMed ID: 28420960
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Assessment of the noise-protective action of the olivocochlear efferents in humans.
    Wolpert S; Heyd A; Wagner W
    Audiol Neurootol; 2014; 19(1):31-40. PubMed ID: 24281009
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transient otoacoustic emissions in the detection of olivocochlear bundle maturation.
    Gkoritsa E; Tsakanikos M; Korres S; Dellagrammaticas H; Apostolopoulos N; Ferekidis E
    Int J Pediatr Otorhinolaryngol; 2006 Apr; 70(4):671-6. PubMed ID: 16198429
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Contralateral suppression of distortion product otoacoustic emissions: effect of the primary frequency in Dpgrams.
    Zhang F; Boettcher FA; Sun XM
    Int J Audiol; 2007 Apr; 46(4):187-95. PubMed ID: 17454232
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Influence of the contralateral acoustic stimulation on the acoustic otoemissions: response modulation by the efferent olivocochlear system].
    Morant Ventura A; Marco Algarra J; Caballero Mallea J; Orts Alborch M; Sequi Canet JM; Mir Planas B
    Acta Otorrinolaringol Esp; 1992; 43(5):307-10. PubMed ID: 1492986
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Long-term sound conditioning increases distortion product otoacoustic emission amplitudes and decreases olivocochlear efferent reflex strength.
    Peng JH; Tao ZZ; Huang ZW
    Neuroreport; 2007 Jul; 18(11):1167-70. PubMed ID: 17589320
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Efferent inhibition strength is a physiological correlate of hyperacusis in children with autism spectrum disorder.
    Wilson US; Sadler KM; Hancock KE; Guinan JJ; Lichtenhan JT
    J Neurophysiol; 2017 Aug; 118(2):1164-1172. PubMed ID: 28592687
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of Hyperbilirubinemia on Medial Olivocochlear System in Newborns.
    Karabulut B; Sürmeli M; Bozdağ Ş; Deveci İ; Doğan R; Oysu Ç
    J Int Adv Otol; 2019 Aug; 15(2):272-276. PubMed ID: 31120424
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Maturation of the human medial efferent reflex revisited.
    Abdala C; Mishra S; Garinis A
    J Acoust Soc Am; 2013 Feb; 133(2):938-50. PubMed ID: 23363111
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Subclinical dysfunction of cochlea and cochlear efferents in migraine: an otoacoustic emission study.
    Bolay H; Bayazit YA; Gündüz B; Ugur AK; Akçali D; Altunyay S; Ilica S; Babacan A
    Cephalalgia; 2008 Apr; 28(4):309-17. PubMed ID: 18279433
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions.
    van Zyl A; Swanepoel D; Hall JW
    Hear Res; 2009 Aug; 254(1-2):77-81. PubMed ID: 19401226
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Influence of the stimulus presentation rate on medial olivocochlear system assays.
    Boothalingam S; Purcell DW
    J Acoust Soc Am; 2015 Feb; 137(2):724-32. PubMed ID: 25698007
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Function and plasticity of the medial olivocochlear system in musicians: a review.
    Perrot X; Collet L
    Hear Res; 2014 Feb; 308():27-40. PubMed ID: 23994434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.