These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25102360)

  • 1. Follow the ATP: tumor energy production: a perspective.
    Oronsky BT; Oronsky N; Fanger GR; Parker CW; Caroen SZ; Lybeck M; Scicinski JJ
    Anticancer Agents Med Chem; 2014; 14(9):1187-98. PubMed ID: 25102360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism.
    Moreno-Sánchez R; Marín-Hernández A; Saavedra E; Pardo JP; Ralph SJ; Rodríguez-Enríquez S
    Int J Biochem Cell Biol; 2014 May; 50():10-23. PubMed ID: 24513530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit.
    Gerbitz KD; Gempel K; Brdiczka D
    Diabetes; 1996 Feb; 45(2):113-26. PubMed ID: 8549853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased demand for NAD
    Luengo A; Li Z; Gui DY; Sullivan LB; Zagorulya M; Do BT; Ferreira R; Naamati A; Ali A; Lewis CA; Thomas CJ; Spranger S; Matheson NJ; Vander Heiden MG
    Mol Cell; 2021 Feb; 81(4):691-707.e6. PubMed ID: 33382985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy metabolism transition in multi-cellular human tumor spheroids.
    Rodríguez-Enríquez S; Gallardo-Pérez JC; Avilés-Salas A; Marín-Hernández A; Carreño-Fuentes L; Maldonado-Lagunas V; Moreno-Sánchez R
    J Cell Physiol; 2008 Jul; 216(1):189-97. PubMed ID: 18264981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors.
    Sun X; Peng Y; Zhao J; Xie Z; Lei X; Tang G
    Bioorg Chem; 2021 Jul; 112():104891. PubMed ID: 33940446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target.
    van Niekerk G; Engelbrecht AM
    Cell Oncol (Dordr); 2018 Aug; 41(4):343-351. PubMed ID: 29797241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic implications of non-electrogenic ATP/ADP exchange in cancer cells: A mechanistic basis for the Warburg effect.
    Lemasters JJ
    Biochim Biophys Acta Bioenerg; 2021 Jul; 1862(7):148410. PubMed ID: 33722515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of Retinoblastoma Protein Shifts Tumor Metabolism from Glycolysis to OXPHOS and Allows the Use of Alternate Fuels.
    Suresh Babu V; Dudeja G; Sa D; Bisht A; Shetty R; Heymans S; Guha N; Ghosh A
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced metabolic activities for ATP production and elevated metabolic flux via pentose phosphate pathway contribute for better CIK cells expansion.
    Zhang W; Huang H; Cai H; Tan WS
    Cell Prolif; 2019 May; 52(3):e12594. PubMed ID: 30847992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell energy metabolism: An update.
    Rigoulet M; Bouchez CL; Paumard P; Ransac S; Cuvellier S; Duvezin-Caubet S; Mazat JP; Devin A
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148276. PubMed ID: 32717222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling.
    Sun K; Tang S; Hou Y; Xi L; Chen Y; Yin J; Peng M; Zhao M; Cui X; Liu M
    EBioMedicine; 2019 Mar; 41():370-383. PubMed ID: 30799198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexokinase binding to mitochondria: a basis for proliferative energy metabolism.
    Golshani-Hebroni SG; Bessman SP
    J Bioenerg Biomembr; 1997 Aug; 29(4):331-8. PubMed ID: 9387093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of energy pathway fluxes in cancer cells - Beyond the Warburg effect.
    Moreno-Sánchez R; Robledo-Cadena DX; Pacheco-Velázquez SC; Vargas Navarro JL; Padilla-Flores JA; Rodríguez-Enríquez S
    Arch Biochem Biophys; 2023 May; 739():109559. PubMed ID: 36906097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low glucose stress decreases cellular NADH and mitochondrial ATP in colonic epithelial cancer cells: Influence of mitochondrial substrates.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():16-24. PubMed ID: 28087461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.
    Levine AJ; Puzio-Kuter AM
    Science; 2010 Dec; 330(6009):1340-4. PubMed ID: 21127244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.
    Epstein T; Xu L; Gillies RJ; Gatenby RA
    Cancer Metab; 2014; 2():7. PubMed ID: 24982758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the ATPome reveals cross-optimization of metabolic pathways.
    Bennett NK; Nguyen MK; Darch MA; Nakaoka HJ; Cousineau D; Ten Hoeve J; Graeber TG; Schuelke M; Maltepe E; Kampmann M; Mendelsohn BA; Nakamura JL; Nakamura K
    Nat Commun; 2020 Aug; 11(1):4319. PubMed ID: 32859923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. More Than Meets the Eye Regarding Cancer Metabolism.
    Kubicka A; Matczak K; Łabieniec-Watała M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extramitochondrial energy production in platelets.
    Ravera S; Signorello MG; Bartolucci M; Ferrando S; Manni L; Caicci F; Calzia D; Panfoli I; Morelli A; Leoncini G
    Biol Cell; 2018 May; 110(5):97-108. PubMed ID: 29537672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.