These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25102360)

  • 21. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells.
    Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B
    Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic phenotype of bladder cancer.
    Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R
    Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cancer: Mitochondrial Origins.
    Stefano GB; Kream RM
    Med Sci Monit; 2015 Dec; 21():3736-9. PubMed ID: 26621573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crucial players in glycolysis: Cancer progress.
    Abbaszadeh Z; Çeşmeli S; Biray Avcı Ç
    Gene; 2020 Feb; 726():144158. PubMed ID: 31629815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Versatility of microglial bioenergetic machinery under starving conditions.
    Nagy AM; Fekete R; Horvath G; Koncsos G; Kriston C; Sebestyen A; Giricz Z; Kornyei Z; Madarasz E; Tretter L
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):201-214. PubMed ID: 29273412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation to Stochastic Temporal Variations in Intratumoral Blood Flow: The Warburg Effect as a Bet Hedging Strategy.
    Gravenmier CA; Siddique M; Gatenby RA
    Bull Math Biol; 2018 May; 80(5):954-970. PubMed ID: 28508297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energetic requirement of carbachol-induced Ca2+ signaling in single mouse beta-cells.
    Schöfl C; Börger J; Lange S; von zur Mühlen A; Brabant G
    Endocrinology; 2000 Nov; 141(11):4065-71. PubMed ID: 11089537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glucose and glutamine metabolism of a murine B-lymphocyte hybridoma grown in batch culture.
    Fitzpatrick L; Jenkins HA; Butler M
    Appl Biochem Biotechnol; 1993 Nov; 43(2):93-116. PubMed ID: 8267405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mitochondrial chaperone TRAP-1 regulates the glutamine metabolism in tumor cells.
    Dharaskar SP; Amere Subbarao S
    Mitochondrion; 2023 Mar; 69():159-170. PubMed ID: 36828164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy deregulation: licensing tumors to grow.
    Garber K
    Science; 2006 May; 312(5777):1158-9. PubMed ID: 16728625
    [No Abstract]   [Full Text] [Related]  

  • 33. The Warburg effect: evolving interpretations of an established concept.
    Chen X; Qian Y; Wu S
    Free Radic Biol Med; 2015 Feb; 79():253-63. PubMed ID: 25277420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production.
    Schuster S; Boley D; Möller P; Stark H; Kaleta C
    Biochem Soc Trans; 2015 Dec; 43(6):1187-94. PubMed ID: 26614659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen.
    Pedersen PL
    J Bioenerg Biomembr; 2007 Jun; 39(3):211-22. PubMed ID: 17879147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells?
    Moreno-Sánchez R; Rodríguez-Enríquez S; Saavedra E; Marín-Hernández A; Gallardo-Pérez JC
    Biofactors; 2009; 35(2):209-25. PubMed ID: 19449450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Warburg Effect Reinterpreted 100 yr on: A First-Principles Stoichiometric Analysis and Interpretation from the Perspective of ATP Metabolism in Cancer Cells.
    Nath S; Balling R
    Function (Oxf); 2024; 5(3):zqae008. PubMed ID: 38706962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy.
    Mazurek S; Boschek CB; Eigenbrodt E
    J Bioenerg Biomembr; 1997 Aug; 29(4):315-30. PubMed ID: 9387092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia.
    Fan J; Kamphorst JJ; Mathew R; Chung MK; White E; Shlomi T; Rabinowitz JD
    Mol Syst Biol; 2013 Dec; 9():712. PubMed ID: 24301801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.