These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 25102360)
41. PKM2 contributes to cancer metabolism. Wong N; Ojo D; Yan J; Tang D Cancer Lett; 2015 Jan; 356(2 Pt A):184-91. PubMed ID: 24508027 [TBL] [Abstract][Full Text] [Related]
42. Disrupting glucose-6-phosphate isomerase fully suppresses the "Warburg effect" and activates OXPHOS with minimal impact on tumor growth except in hypoxia. de Padua MC; Delodi G; Vučetić M; Durivault J; Vial V; Bayer P; Noleto GR; Mazure NM; Ždralević M; Pouysségur J Oncotarget; 2017 Oct; 8(50):87623-87637. PubMed ID: 29152106 [TBL] [Abstract][Full Text] [Related]
43. The dynamic side of the Warburg effect: glycolytic intermediate storage as buffer for fluctuating glucose and O van Beek JHGM F1000Res; 2018; 7():1177. PubMed ID: 30755789 [No Abstract] [Full Text] [Related]
44. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect. Damiani C; Colombo R; Gaglio D; Mastroianni F; Pescini D; Westerhoff HV; Mauri G; Vanoni M; Alberghina L PLoS Comput Biol; 2017 Sep; 13(9):e1005758. PubMed ID: 28957320 [TBL] [Abstract][Full Text] [Related]
45. Phosphofructokinase: a mediator of glycolytic flux in cancer progression. Al Hasawi N; Alkandari MF; Luqmani YA Crit Rev Oncol Hematol; 2014 Dec; 92(3):312-21. PubMed ID: 24910089 [TBL] [Abstract][Full Text] [Related]
49. Methods to monitor and compare mitochondrial and glycolytic ATP production. Patergnani S; Baldassari F; De Marchi E; Karkucinska-Wieckowska A; Wieckowski MR; Pinton P Methods Enzymol; 2014; 542():313-32. PubMed ID: 24862273 [TBL] [Abstract][Full Text] [Related]
50. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome. Kaldma A; Klepinin A; Chekulayev V; Mado K; Shevchuk I; Timohhina N; Tepp K; Kandashvili M; Varikmaa M; Koit A; Planken M; Heck K; Truu L; Planken A; Valvere V; Rebane E; Kaambre T Int J Biochem Cell Biol; 2014 Oct; 55():171-86. PubMed ID: 25218857 [TBL] [Abstract][Full Text] [Related]
51. Interleukin-7 mediates glucose utilization in lymphocytes through transcriptional regulation of the hexokinase II gene. Chehtane M; Khaled AR Am J Physiol Cell Physiol; 2010 Jun; 298(6):C1560-71. PubMed ID: 20200205 [TBL] [Abstract][Full Text] [Related]
52. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. Xintaropoulou C; Ward C; Wise A; Queckborner S; Turnbull A; Michie CO; Williams ARW; Rye T; Gourley C; Langdon SP BMC Cancer; 2018 Jun; 18(1):636. PubMed ID: 29866066 [TBL] [Abstract][Full Text] [Related]
53. The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition. Brandi J; Cecconi D; Cordani M; Torrens-Mas M; Pacchiana R; Dalla Pozza E; Butera G; Manfredi M; Marengo E; Oliver J; Roca P; Dando I; Donadelli M Free Radic Biol Med; 2016 Dec; 101():305-316. PubMed ID: 27989750 [TBL] [Abstract][Full Text] [Related]
54. Metastatic cancer cells compensate for low energy supplies in hostile microenvironments with bioenergetic adaptation and metabolic reprogramming. Cheng Y; Lu Y; Zhang D; Lian S; Liang H; Ye Y; Xie R; Li S; Chen J; Xue X; Xie J; Jia L Int J Oncol; 2018 Dec; 53(6):2590-2604. PubMed ID: 30280201 [TBL] [Abstract][Full Text] [Related]
55. A Flux Balance of Glucose Metabolism Clarifies the Requirements of the Warburg Effect. Dai Z; Shestov AA; Lai L; Locasale JW Biophys J; 2016 Sep; 111(5):1088-100. PubMed ID: 27602736 [TBL] [Abstract][Full Text] [Related]
56. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Ganapathy-Kanniappan S Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176 [TBL] [Abstract][Full Text] [Related]
57. The Warburg effect: 80 years on. Potter M; Newport E; Morten KJ Biochem Soc Trans; 2016 Oct; 44(5):1499-1505. PubMed ID: 27911732 [TBL] [Abstract][Full Text] [Related]
58. mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells. Pusapati RV; Daemen A; Wilson C; Sandoval W; Gao M; Haley B; Baudy AR; Hatzivassiliou G; Evangelista M; Settleman J Cancer Cell; 2016 Apr; 29(4):548-562. PubMed ID: 27052953 [TBL] [Abstract][Full Text] [Related]
59. Autophagy is an important metabolic pathway to determine leukemia cell survival following suppression of the glycolytic pathway. Kawaguchi M; Aoki S; Hirao T; Morita M; Ito K Biochem Biophys Res Commun; 2016 May; 474(1):188-192. PubMed ID: 27107693 [TBL] [Abstract][Full Text] [Related]
60. Study on ATP-generating system and related hexokinase activity in mitochondria isolated from undifferentiated or differentiated HT29 adenocarcinoma cells. Gauthier T; Denis-Pouxviel C; Paris H; Murat JC Biochim Biophys Acta; 1989 Jul; 975(2):231-8. PubMed ID: 2525930 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]