These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25102360)

  • 61. Mitochondria and cancer: Warburg addressed.
    Wallace DC
    Cold Spring Harb Symp Quant Biol; 2005; 70():363-74. PubMed ID: 16869773
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis.
    Pavlides S; Vera I; Gandara R; Sneddon S; Pestell RG; Mercier I; Martinez-Outschoorn UE; Whitaker-Menezes D; Howell A; Sotgia F; Lisanti MP
    Antioxid Redox Signal; 2012 Jun; 16(11):1264-84. PubMed ID: 21883043
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy.
    Loiseau D; Morvan D; Chevrollier A; Demidem A; Douay O; Reynier P; Stepien G
    Mol Carcinog; 2009 Aug; 48(8):733-41. PubMed ID: 19347860
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation.
    Davila MP; Muñoz PM; Bolaños JM; Stout TA; Gadella BM; Tapia JA; da Silva CB; Ferrusola CO; Peña FJ
    Reproduction; 2016 Dec; 152(6):683-694. PubMed ID: 27798283
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Moderate DNA damage promotes metabolic flux into PPP via PKM2 Y-105 phosphorylation: a feature that favours cancer cells.
    Kumar B; Bamezai RN
    Mol Biol Rep; 2015 Aug; 42(8):1317-21. PubMed ID: 25840825
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells.
    Shimada N; Takasawa R; Tanuma SI
    Arch Biochem Biophys; 2018 Jan; 638():1-7. PubMed ID: 29225125
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bcl-x
    Pfeiffer A; Schneider J; Bueno D; Dolga A; Voss TD; Lewerenz J; Wüllner V; Methner A
    Free Radic Biol Med; 2017 Nov; 112():350-359. PubMed ID: 28807815
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mitochondria, hexokinase and pyruvate kinase isozymes in the aerobic glycolysis of tumor cells.
    Petrucci D; Cesare P; Colafarina S
    Ital J Biochem; 1997 Sep; 46(3):131-41. PubMed ID: 9442422
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism?
    Cohen JJ
    Am J Physiol; 1979 May; 236(5):F423-33. PubMed ID: 220881
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells.
    Ewald J; He Z; Dimitriew W; Schuster S
    NPJ Syst Biol Appl; 2024 Jul; 10(1):77. PubMed ID: 39025861
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Revisiting the Crabtree/Warburg effect in a dynamic perspective: a fitness advantage against sugar-induced cell death.
    de Alteriis E; Cartenì F; Parascandola P; Serpa J; Mazzoleni S
    Cell Cycle; 2018; 17(6):688-701. PubMed ID: 29509056
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system.
    de Meis L; Grieco MA; Galina A
    FEBS Lett; 1992 Aug; 308(2):197-201. PubMed ID: 1499730
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Profile of energy metabolism in a murine hybridoma: glucose and glutamine utilization.
    Petch D; Butler M
    J Cell Physiol; 1994 Oct; 161(1):71-6. PubMed ID: 7929610
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cancer morphogenesis: role of mitochondrial failure.
    Fosslien E
    Ann Clin Lab Sci; 2008; 38(4):307-29. PubMed ID: 18988924
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production.
    Chen Y; Liu Q; Chen X; Wu J; Guo T; Zhu C; Ying H
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):577-83. PubMed ID: 25566953
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Energy metabolism in the ischemic heart.
    Rovetto MJ
    Tex Rep Biol Med; 1979; 39():397-407. PubMed ID: 553321
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Warburg Effect, Glutamine, Succinate, Alanine, When Oxygen Matters.
    Bouillaud F; Hammad N; Schwartz L
    Biology (Basel); 2021 Oct; 10(10):. PubMed ID: 34681099
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Control of glycolytic flux in directed biosynthesis of uridine-phosphoryl compounds through the manipulation of ATP availability.
    Chen Y; Liu Q; Chen X; Wu J; Xie J; Guo T; Zhu C; Ying H
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6621-32. PubMed ID: 24769901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.