BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25102403)

  • 1. Highly site-selective transvascular drug delivery by the use of nanosecond pulsed laser-induced photomechanical waves.
    Sato S; Yoshida K; Kawauchi S; Hosoe K; Akutsu Y; Fujimoto N; Nawashiro H; Terakawa M
    J Control Release; 2014 Oct; 192():228-35. PubMed ID: 25102403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Therapeutic Effects of an Antitumor Agent on Subcutaneous Tumors in Mice by Photomechanical Wave-based Transvascular Drug Delivery.
    Tsunoi Y; Tsuda H; Kawauchi S; Araki K; Sato S
    J Cancer; 2023; 14(10):1773-1780. PubMed ID: 37476190
    [No Abstract]   [Full Text] [Related]  

  • 3. Assessment of tissue alteration in skin after interaction with photomechanical waves used for gene transfection.
    Terakawa M; Tsuda H; Ashida H; Sato S
    Lasers Surg Med; 2010 Jul; 42(5):400-7. PubMed ID: 20583245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic-resonance imaging for kinetic analysis of permeability changes during focused ultrasound-induced blood-brain barrier opening and brain drug delivery.
    Chai WY; Chu PC; Tsai MY; Lin YC; Wang JJ; Wei KC; Wai YY; Liu HL
    J Control Release; 2014 Oct; 192():1-9. PubMed ID: 24969355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible blood-brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation.
    Yang FY; Lin YS; Kang KH; Chao TK
    J Control Release; 2011 Feb; 150(1):111-6. PubMed ID: 21070825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transvascular delivery of talaporfin sodium to subcutaneous tumors in mice by nanosecond pulsed laser-induced photomechanical waves.
    Tsunoi Y; Kawauchi S; Yamada N; Araki K; Tsuda H; Sato S
    Photodiagnosis Photodyn Ther; 2023 Dec; 44():103861. PubMed ID: 37879425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation characteristics of photomechanical waves and their application to gene delivery into deep tissue.
    Ando T; Sato S; Ashida H; Obara M
    Ultrasound Med Biol; 2012 Jan; 38(1):75-84. PubMed ID: 22104529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery.
    Tabatabaei SN; Girouard H; Carret AS; Martel S
    J Control Release; 2015 May; 206():49-57. PubMed ID: 25724273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photomechanical transdermal delivery of insulin in vivo.
    Lee S; McAuliffe DJ; Mulholland SE; Doukas AG
    Lasers Surg Med; 2001; 28(3):282-5. PubMed ID: 11295766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy for bypassing the blood-brain barrier: Facial intradermal brain-targeted delivery via the trigeminal nerve.
    Yu XC; Yang JJ; Jin BH; Xu HL; Zhang HY; Xiao J; Lu CT; Zhao YZ; Yang W
    J Control Release; 2017 Jul; 258():22-33. PubMed ID: 28476614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific gene transfer into the rat spinal cord by photomechanical waves.
    Ando T; Sato S; Toyooka T; Uozumi Y; Nawashiro H; Ashida H; Obara M
    J Biomed Opt; 2011 Oct; 16(10):108002. PubMed ID: 22029370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence imaging of blood-brain barrier disruption.
    Hawkins BT; Egleton RD
    J Neurosci Methods; 2006 Mar; 151(2):262-7. PubMed ID: 16181683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.
    Xu Y; Cui H; Zhu Q; Hua X; Xia H; Tan K; Gao Y; Zhao J; Liu Z
    Biomed Res Int; 2016; 2016():4759750. PubMed ID: 27579317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical fiber-based photomechanical gene transfer system for in vivo application.
    Sato S; Ando T; Obara M
    Opt Lett; 2011 Dec; 36(23):4545-7. PubMed ID: 22139237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo targeted gene transfer in skin by the use of laser-induced stress waves.
    Ogura M; Sato S; Nakanishi K; Uenoyama M; Kiyozumi T; Saitoh D; Ikeda T; Ashida H; Obara M
    Lasers Surg Med; 2004; 34(3):242-8. PubMed ID: 15022251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perifocal and remote blood-brain barrier disruption in cortical photothrombotic ischemic lesion and its modulation by the choice of anesthesia.
    Krysl D; Deykun K; Lambert L; Pokorny J; Mares J
    J Physiol Pharmacol; 2012 Apr; 63(2):127-32. PubMed ID: 22653898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiberoptic microneedle device facilitates volumetric infusate dispersion during convection-enhanced delivery in the brain.
    Hood RL; Andriani RT; Emch S; Robertson JL; Rylander CG; Rossmeisl JH
    Lasers Surg Med; 2013 Sep; 45(7):418-26. PubMed ID: 23861185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of perivascular spaces or tissues in the facial intradermal brain-targeted delivery.
    Yang W; Jin BH; Chen YJ; Cao C; Zhu JZ; Zhao YZ; Yu XC; Li FZ
    Drug Deliv; 2019 Dec; 26(1):393-403. PubMed ID: 30929532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice.
    Klohs J; Steinbrink J; Bourayou R; Mueller S; Cordell R; Licha K; Schirner M; Dirnagl U; Lindauer U; Wunder A
    J Neurosci Methods; 2009 May; 180(1):126-32. PubMed ID: 19427539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence imaging of Evans blue extravasation into mouse brain induced by low frequency ultrasound with microbubble.
    Shen Y; Zhang A; Guo J; Dan G; Chen S; Yu H
    Biomed Mater Eng; 2014; 24(6):2831-8. PubMed ID: 25226988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.