These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25102598)

  • 41. Aedes albopictus in northeast Mexico: an update on adult distribution and first report of parasitism by Ascogregarina taiwanensis.
    Reyes-Villanueva F; Garza-Hernande JA; Garcia-Munguia AM; Howard AF; Ortega-Morales AI; Adeleke MA; Rodriguez-Perez MA
    J Vector Borne Dis; 2013 Sep; 50(3):202-5. PubMed ID: 24220079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Field observation on the efficacy of Toxorhynchites splendens (Wiedemann) as a biocontrol agent against Aedes albopictus (Skuse) larvae in a cemetery.
    Nyamah MA; Sulaiman S; Omar B
    Trop Biomed; 2011 Aug; 28(2):312-9. PubMed ID: 22041750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Imported tires; a potential source for the entry of Aedes invasive mosquitoes to Iran.
    Mohammadi A; Mostafavi E; Zaim M; Enayati A; Basseri HR; Mirolyaei A; Poormozafari J; Gouya MM
    Travel Med Infect Dis; 2022; 49():102389. PubMed ID: 35753657
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in the Lower Rio Grande Valley of Texas and Mexico.
    Sames WJ; Bueno R; Hayes J; Olson JK
    J Am Mosq Control Assoc; 1996 Sep; 12(3 Pt 1):487-90. PubMed ID: 8887230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficacy of alpha-cypermethrin and lambda-cyhalothrin applications to prevent Aedes breeding in tires.
    Pettit WJ; Whelan PI; McDonnell J; Jacups SP
    J Am Mosq Control Assoc; 2010 Dec; 26(4):387-97. PubMed ID: 21290934
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Suppression of Aedes aegypti by predatory Toxorhynchites moctezuma in an island habitat.
    Tikasingh ES; Eustace A
    Med Vet Entomol; 1992 Jul; 6(3):272-80. PubMed ID: 1358269
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of Costa Rican copepods (Crustacea: Eudecapoda) for larval Aedes aegypti control with special reference to Mesocyclops thermocyclopoides.
    Schaper S
    J Am Mosq Control Assoc; 1999 Dec; 15(4):510-9. PubMed ID: 10612615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The key breeding sites by pupal survey for dengue mosquito vectors, Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Guba, Cebu City, Philippines.
    Edillo FE; Roble ND; Otero ND
    Southeast Asian J Trop Med Public Health; 2012 Nov; 43(6):1365-74. PubMed ID: 23413699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of tire leachate on the invasive mosquito
    Villena OC; Terry I; Iwata K; Landa ER; LaDeau SL; Leisnham PT
    PeerJ; 2017; 5():e3756. PubMed ID: 28890855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New strategy against Aedes aegypti in Vietnam.
    Kay B; Vu SN
    Lancet; 2005 Feb 12-18; 365(9459):613-7. PubMed ID: 15708107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Larval survey of tire-breeding mosquitoes in Alabama.
    Qualls WA; Mullen GR
    J Am Mosq Control Assoc; 2006 Dec; 22(4):601-8. PubMed ID: 17304924
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Macrocyclops albidus (Copepoda: Cyclopidae): a new alternative for the control of mosquito larvae in Cuba].
    Suárez Delgado S; Rodríguez Rodríguez J; Menéndez Díaz Z; Montada Dorta D; García Avila I; Marquetti Fernández Mdel C
    Rev Cubana Med Trop; 2005; 57(3):207-11. PubMed ID: 17969275
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation of a Pseudomonas fluorescens metabolite/exotoxin active against both larvae and pupae of vector mosquitoes.
    Prabakaran G; Paily KP; Padmanabhan V; Hoti SL; Balaraman K
    Pest Manag Sci; 2003 Jan; 59(1):21-4. PubMed ID: 12558096
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of larval Aedes aegypti (Diptera: Culicidae) by cyclopoid copepods in peridomestic breeding containers.
    Marten GG; Borjas G; Cush M; Fernandez E; Reid JW
    J Med Entomol; 1994 Jan; 31(1):36-44. PubMed ID: 8158627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biological control of Aedes albopictus (Diptera: Culicidae) larvae in trap tyres by Mesocyclops longisetus (Copepoda: Cyclopidae) in two field trials.
    Urbano Santos L; Andrade CF; Carvalho GA
    Mem Inst Oswaldo Cruz; 1996; 91(2):161-2. PubMed ID: 8736084
    [No Abstract]   [Full Text] [Related]  

  • 56. Effectiveness of spinosad and temephos for the control of mosquito larvae at a tire dump in Allende, Nuevo Leon, Mexico.
    Garza-Robledo AA; Martínez-Perales JF; Rodríguez-Castro VA; Quiroz-Martínez H
    J Am Mosq Control Assoc; 2011 Dec; 27(4):404-7. PubMed ID: 22329273
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aedes albopictus and other mosquitoes imported in tires into Durban, South Africa.
    Jupp PG; Kemp A
    J Am Mosq Control Assoc; 1992 Sep; 8(3):321-2. PubMed ID: 1402872
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of antagonistic crustaceans on the population of
    Thakur A; Kocher DK
    J Vector Borne Dis; 2020; 57(1):58-62. PubMed ID: 33818457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aedes albopictus in the United States: rapid spread of a potential disease vector.
    Moore CG; Francy DB; Eliason DA; Monath TP
    J Am Mosq Control Assoc; 1988 Sep; 4(3):356-61. PubMed ID: 3058869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions.
    Singh RK; Singh SP
    J Commun Dis; 2004 Jun; 36(2):105-10. PubMed ID: 16295671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.