These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25103267)

  • 1. Magic angle-enhanced MRI of fibrous microstructures in sclera and cornea with and without intraocular pressure loading.
    Ho LC; Sigal IA; Jan NJ; Squires A; Tse Z; Wu EX; Kim SG; Schuman JS; Chan KC
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):5662-72. PubMed ID: 25103267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell.
    Foong TY; Hua Y; Amini R; Sigal IA
    Exp Eye Res; 2023 May; 230():109446. PubMed ID: 36935071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation.
    Ho LC; Sigal IA; Jan NJ; Yang X; van der Merwe Y; Yu Y; Chau Y; Leung CK; Conner IP; Jin T; Wu EX; Kim SG; Wollstein G; Schuman JS; Chan KC
    Sci Rep; 2016 Aug; 6():32080. PubMed ID: 27561353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye.
    Pierscionek BK; Asejczyk-Widlicka M; Schachar RA
    Br J Ophthalmol; 2007 Jun; 91(6):801-3. PubMed ID: 17151057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye.
    Clayson K; Pan X; Pavlatos E; Short R; Morris H; Hart RT; Liu J
    Exp Eye Res; 2017 Dec; 165():29-34. PubMed ID: 28864177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-globe biomechanics using high-field MRI.
    Voorhees AP; Ho LC; Jan NJ; Tran H; van der Merwe Y; Chan K; Sigal IA
    Exp Eye Res; 2017 Jul; 160():85-95. PubMed ID: 28527594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations.
    Girard MJ; Suh JK; Bottlang M; Burgoyne CF; Downs JC
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5656-69. PubMed ID: 21519033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2D or not 2D? Mapping the in-depth inclination of the collagen fibers of the corneoscleral shell.
    Ji F; Quinn M; Hua Y; Lee PY; Sigal IA
    Exp Eye Res; 2023 Dec; 237():109701. PubMed ID: 37898229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The elasticity and rigidity of the outer coats of the eye.
    Asejczyk-Widlicka M; Pierscionek BK
    Br J Ophthalmol; 2008 Oct; 92(10):1415-8. PubMed ID: 18815423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anterior chamber angle opening during corneoscleral indentation: the mechanism of whole eye globe deformation and the importance of the limbus.
    Amini R; Barocas VH
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5288-94. PubMed ID: 19553625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes.
    Nguyen BA; Reilly MA; Roberts CJ
    Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of Corneal and Scleral Pneumatonometry in Pediatric Patients.
    Lee JH; Sanchez LR; Porco T; Han Y; de Alba Campomanes AG
    Ophthalmology; 2018 Aug; 125(8):1209-1214. PubMed ID: 29544961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of scleral and corneal Tono-Pen readings.
    Kolin T; Wedemeyer LL; Kolin E; Braun Y
    J AAPOS; 2003 Aug; 7(4):291-2. PubMed ID: 12917618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Oculab Tono-Pen readings obtained from various corneal and scleral locations.
    Khan JA; Davis M; Graham CE; Trank J; Whitacre MM
    Arch Ophthalmol; 1991 Oct; 109(10):1444-6. PubMed ID: 1929938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crimp around the globe; patterns of collagen crimp across the corneoscleral shell.
    Jan NJ; Brazile BL; Hu D; Grube G; Wallace J; Gogola A; Sigal IA
    Exp Eye Res; 2018 Jul; 172():159-170. PubMed ID: 29660327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Scleral Tono-Pen Intraocular Pressure Measurements with Goldmann Applanation Tonometry.
    Badakere SV; Choudhari NS; Rao HL; Chary CR; Garudadri CS; Senthil S
    Optom Vis Sci; 2018 Feb; 95(2):129-135. PubMed ID: 29370020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma.
    Norman RE; Flanagan JG; Sigal IA; Rausch SM; Tertinegg I; Ethier CR
    Exp Eye Res; 2011 Jul; 93(1):4-12. PubMed ID: 20883693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lattice model for computing the transmissivity of the cornea and sclera.
    Ameen DB; Bishop MF; McMullen T
    Biophys J; 1998 Nov; 75(5):2520-31. PubMed ID: 9788948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.