BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25103452)

  • 1. Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption.
    Rosenzweig S; Sorial GA; Sahle-Demessie E; McAvoy DC
    J Hazard Mater; 2014 Aug; 279():410-7. PubMed ID: 25103452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acid and alcohol network forces within functionalized multiwall carbon nanotubes bundles on adsorption of copper (II) species.
    Rosenzweig S; Sorial GA; Sahle-Demessie E; Mack J
    Chemosphere; 2013 Jan; 90(2):395-402. PubMed ID: 22921655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles.
    Wang F; Haftka JJ; Sinnige TL; Hermens JL; Chen W
    Environ Pollut; 2014 Mar; 186():226-33. PubMed ID: 24394184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets.
    Pinto AM; Moreira JA; Magalhães FD; Gonçalves IC
    Colloids Surf B Biointerfaces; 2016 Oct; 146():818-24. PubMed ID: 27451370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles.
    Ghalkhani M; Shahrokhian S; Ghorbani-Bidkorbeh F
    Talanta; 2009 Nov; 80(1):31-8. PubMed ID: 19782189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism.
    Xu J; Cao Z; Zhang Y; Yuan Z; Lou Z; Xu X; Wang X
    Chemosphere; 2018 Mar; 195():351-364. PubMed ID: 29272803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.
    Mabayoje O; Seredych M; Bandosz TJ
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3316-24. PubMed ID: 22667349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding Capacity and Selectivity of Functionalized and Un-functionalized Carbon Nanotubes for Development of Copper-Detecting Printable Sensor.
    Peel HR; Crouch RA; Martin D; Stromer BS; Bednar AJ
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):455-463. PubMed ID: 32108243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential neural cell adhesion and neurite outgrowth on carbon nanotube and graphene reinforced polymeric scaffolds.
    Gupta P; Agrawal A; Murali K; Varshney R; Beniwal S; Manhas S; Roy P; Lahiri D
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():539-551. PubMed ID: 30678940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.
    Zhang Y; Petibone D; Xu Y; Mahmood M; Karmakar A; Casciano D; Ali S; Biris AS
    Drug Metab Rev; 2014 May; 46(2):232-46. PubMed ID: 24506522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and inhibition of acetylcholinesterase by different nanoparticles.
    Wang Z; Zhao J; Li F; Gao D; Xing B
    Chemosphere; 2009 Sep; 77(1):67-73. PubMed ID: 19540550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review.
    Gupta VK; Kumar R; Nayak A; Saleh TA; Barakat MA
    Adv Colloid Interface Sci; 2013 Jun; 193-194():24-34. PubMed ID: 23579224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of fulvic acid by carbon nanotubes from water.
    Yang K; Xing B
    Environ Pollut; 2009 Apr; 157(4):1095-100. PubMed ID: 19084305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.
    Dimiev AM; Gizzatov A; Wilson LJ; Tour JM
    Chem Commun (Camb); 2013 Apr; 49(26):2613-5. PubMed ID: 23435853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.
    Schierz A; Zänker H
    Environ Pollut; 2009 Apr; 157(4):1088-94. PubMed ID: 19010575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.
    Apul OG; Wang Q; Zhou Y; Karanfil T
    Water Res; 2013 Mar; 47(4):1648-54. PubMed ID: 23313232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water.
    Dong X; Chen J; Ma Y; Wang J; Chan-Park MB; Liu X; Wang L; Huang W; Chen P
    Chem Commun (Camb); 2012 Nov; 48(86):10660-2. PubMed ID: 23001335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes.
    Su F; Lu C; Chen HS
    Langmuir; 2011 Jul; 27(13):8090-8. PubMed ID: 21644559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue.
    Yan H; Tao X; Yang Z; Li K; Yang H; Li A; Cheng R
    J Hazard Mater; 2014 Mar; 268():191-8. PubMed ID: 24491443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.