These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 25103547)
101. Sample and Library Preparation for PacBio Long-Read Sequencing in Grapevine. Salava H; Deák T; Czepe C; Maghuly F Methods Mol Biol; 2024; 2787():183-197. PubMed ID: 38656490 [TBL] [Abstract][Full Text] [Related]
102. A new strategy for genome assembly using short sequence reads and reduced representation libraries. Young AL; Abaan HO; Zerbino D; Mullikin JC; Birney E; Margulies EH Genome Res; 2010 Feb; 20(2):249-56. PubMed ID: 20123915 [TBL] [Abstract][Full Text] [Related]
103. PacBio Long-Read Sequencing, Assembly, and Funannotate Reannotation of the Complete Genome of Trichoderma reesei QM6a. Li WC; Wang TF Methods Mol Biol; 2021; 2234():311-329. PubMed ID: 33165795 [TBL] [Abstract][Full Text] [Related]
104. Multiplexed highly-accurate DNA sequencing of closely-related HIV-1 variants using continuous long reads from single molecule, real-time sequencing. Dilernia DA; Chien JT; Monaco DC; Brown MP; Ende Z; Deymier MJ; Yue L; Paxinos EE; Allen S; Tirado-Ramos A; Hunter E Nucleic Acids Res; 2015 Nov; 43(20):e129. PubMed ID: 26101252 [TBL] [Abstract][Full Text] [Related]
105. High-throughput and high-accuracy single-cell RNA isoform analysis using PacBio circular consensus sequencing. Shi ZX; Chen ZC; Zhong JY; Hu KH; Zheng YF; Chen Y; Xie SQ; Bo XC; Luo F; Tang C; Xiao CL; Liu YZ Nat Commun; 2023 May; 14(1):2631. PubMed ID: 37149708 [TBL] [Abstract][Full Text] [Related]
106. Application of a simplified method of chloroplast enrichment to small amounts of tissue for chloroplast genome sequencing. Sakaguchi S; Ueno S; Tsumura Y; Setoguchi H; Ito M; Hattori C; Nozoe S; Takahashi D; Nakamasu R; Sakagami T; Lannuzel G; Fogliani B; Wulff AS; L'Huillier L; Isagi Y Appl Plant Sci; 2017 May; 5(5):. PubMed ID: 28529832 [TBL] [Abstract][Full Text] [Related]
107. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Kozarewa I; Ning Z; Quail MA; Sanders MJ; Berriman M; Turner DJ Nat Methods; 2009 Apr; 6(4):291-5. PubMed ID: 19287394 [TBL] [Abstract][Full Text] [Related]
108. Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing. Zhu S; Beaulaurier J; Deikus G; Wu TP; Strahl M; Hao Z; Luo G; Gregory JA; Chess A; He C; Xiao A; Sebra R; Schadt EE; Fang G Genome Res; 2018 Jul; 28(7):1067-1078. PubMed ID: 29764913 [TBL] [Abstract][Full Text] [Related]
109. [The principle and application of the single-molecule real-time sequencing technology]. Liu YH; Wang L; Yu L Yi Chuan; 2015 Mar; 37(3):259-268. PubMed ID: 25787000 [TBL] [Abstract][Full Text] [Related]
110. Plant super-barcode: a case study on genome-based identification for closely related species of Fritillaria. Wu L; Wu M; Cui N; Xiang L; Li Y; Li X; Chen S Chin Med; 2021 Jul; 16(1):52. PubMed ID: 34225754 [TBL] [Abstract][Full Text] [Related]
111. Comparative analysis of sipeimine content, metabolome and chloroplast genome in cultivated and wild varieties of Fritillaria taipaiensis. Xu Y; Chen C; Cai J; Lin L; Song W; Yang K; Zhao Y; Wen C; Wei J; Liu Z J Sci Food Agric; 2024 Sep; 104(12):7271-7280. PubMed ID: 38630097 [TBL] [Abstract][Full Text] [Related]
112. Long-read, whole-genome shotgun sequence data for five model organisms. Kim KE; Peluso P; Babayan P; Yeadon PJ; Yu C; Fisher WW; Chin CS; Rapicavoli NA; Rank DR; Li J; Catcheside DE; Celniker SE; Phillippy AM; Bergman CM; Landolin JM Sci Data; 2014; 1():140045. PubMed ID: 25977796 [TBL] [Abstract][Full Text] [Related]
113. Two high-quality de novo genomes from single ethanol-preserved specimens of tiny metazoans (Collembola). Schneider C; Woehle C; Greve C; D'Haese CA; Wolf M; Hiller M; Janke A; Bálint M; Huettel B Gigascience; 2021 May; 10(5):. PubMed ID: 34018554 [TBL] [Abstract][Full Text] [Related]
114. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing. Lutz KA; Wang W; Zdepski A; Michael TP BMC Biotechnol; 2011 May; 11():54. PubMed ID: 21599914 [TBL] [Abstract][Full Text] [Related]
115. Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Tang M; Tan M; Meng G; Yang S; Su X; Liu S; Song W; Li Y; Wu Q; Zhang A; Zhou X Nucleic Acids Res; 2014 Dec; 42(22):e166. PubMed ID: 25294837 [TBL] [Abstract][Full Text] [Related]
116. A SMRT approach for targeted amplicon sequencing of museum specimens (Lepidoptera)-patterns of nucleotide misincorporation. D'Ercole J; Prosser SWJ; Hebert PDN PeerJ; 2021; 9():e10420. PubMed ID: 33520432 [TBL] [Abstract][Full Text] [Related]
117. Reference-based assembly of chloroplast genome from leaf transcriptome data of Senthilkumar S; Ulaganathan K; Ghosh Dasgupta M 3 Biotech; 2021 Aug; 11(8):393. PubMed ID: 34458062 [TBL] [Abstract][Full Text] [Related]
118. conLSH: Context based Locality Sensitive Hashing for mapping of noisy SMRT reads. Chakraborty A; Bandyopadhyay S Comput Biol Chem; 2020 Apr; 85():107206. PubMed ID: 32000034 [TBL] [Abstract][Full Text] [Related]
119. A flexible and efficient template format for circular consensus sequencing and SNP detection. Travers KJ; Chin CS; Rank DR; Eid JS; Turner SW Nucleic Acids Res; 2010 Aug; 38(15):e159. PubMed ID: 20571086 [TBL] [Abstract][Full Text] [Related]
120. Graph-based pan-genomes: increased opportunities in plant genomics. Wang S; Qian YQ; Zhao RP; Chen LL; Song JM J Exp Bot; 2023 Jan; 74(1):24-39. PubMed ID: 36255144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]