BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25103813)

  • 1. Solid-phase supports for the in situ assembly of quantum dot-FRET hybridization assays in channel microfluidics.
    Tavares AJ; Noor MO; Uddayasankar U; Krull UJ; Vannoy CH
    Methods Mol Biol; 2014; 1199():241-55. PubMed ID: 25103813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Chen L; Algar WR; Tavares AJ; Krull UJ
    Anal Bioanal Chem; 2011 Jan; 399(1):133-41. PubMed ID: 20978748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Noor MO; Krull UJ
    Anal Chem; 2013 Aug; 85(15):7502-11. PubMed ID: 23837820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Noor MO; Shahmuradyan A; Krull UJ
    Anal Chem; 2013 Feb; 85(3):1860-7. PubMed ID: 23272728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection.
    Noor MO; Hrovat D; Moazami-Goudarzi M; Espie GS; Krull UJ
    Anal Chim Acta; 2015 Jul; 885():156-65. PubMed ID: 26231901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Tavares AJ; Noor MO; Vannoy CH; Algar WR; Krull UJ
    Anal Chem; 2012 Jan; 84(1):312-9. PubMed ID: 22136151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2010 Jan; 82(1):400-5. PubMed ID: 19938821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Langmuir; 2009 Jan; 25(1):633-8. PubMed ID: 19115878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dot FRET-based probes in thin films grown in microfluidic channels.
    Crivat G; Da Silva SM; Reyes DR; Locascio LE; Gaitan M; Rosenzweig N; Rosenzweig Z
    J Am Chem Soc; 2010 Feb; 132(5):1460-1. PubMed ID: 20073459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2009 May; 81(10):4113-20. PubMed ID: 19358559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence.
    Algar WR; Krull UJ
    Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule quantum-dot fluorescence resonance energy transfer.
    Hohng S; Ha T
    Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapting fluorescence resonance energy transfer with quantum dot donors for solid-phase hybridization assays in microtiter plate format.
    Petryayeva E; Algar WR; Krull UJ
    Langmuir; 2013 Jan; 29(3):977-87. PubMed ID: 23298406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and sensitive analysis of DNA hybridization in a PDMS micro-fluidic channel using fluorescence resonance energy transfer.
    Yea KH; Lee S; Choo J; Oh CH; Lee S
    Chem Commun (Camb); 2006 Apr; (14):1509-11. PubMed ID: 16575443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Quantum Dots Aggregation Enhances Förster Resonant Energy Transfer.
    Hottechamps J; Noblet T; Brans A; Humbert C; Dreesen L
    Chemphyschem; 2020 May; 21(9):853-862. PubMed ID: 32084295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors.
    Vannoy CH; Chong L; Le C; Krull UJ
    Anal Chim Acta; 2013 Jan; 759():92-9. PubMed ID: 23260681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips.
    Petryayeva E; Algar WR
    Analyst; 2015 Jun; 140(12):4037-45. PubMed ID: 25924885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.