BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25103979)

  • 1. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.
    Streeter KA; Baker-Herman TL
    J Appl Physiol (1985); 2014 Oct; 117(7):682-93. PubMed ID: 25103979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal TNF is necessary for inactivity-induced phrenic motor facilitation.
    Broytman O; Baertsch NA; Baker-Herman TL
    J Physiol; 2013 Nov; 591(22):5585-98. PubMed ID: 23878370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivity-induced phrenic motor facilitation requires PKCζ activity within phrenic motor neurons.
    Baertsch NA; Marciante AB; Mitchell GS; Baker TL
    J Neurophysiol; 2024 Jun; 131(6):1188-1199. PubMed ID: 38691529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.
    Baertsch NA; Baker TL
    J Neurophysiol; 2017 Nov; 118(5):2702-2710. PubMed ID: 28814632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.
    Baertsch NA; Baker-Herman TL
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(8):R700-7. PubMed ID: 25673781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.
    Streeter KA; Baker-Herman TL
    Exp Neurol; 2014 Jun; 256():46-56. PubMed ID: 24681155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.
    Strey KA; Nichols NL; Baertsch NA; Broytman O; Baker-Herman TL
    J Neurosci; 2012 Nov; 32(46):16510-20. PubMed ID: 23152633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced respiratory neural activity elicits a long-lasting decrease in the CO
    Baertsch NA; Baker TL
    Exp Neurol; 2017 Jan; 287(Pt 2):235-242. PubMed ID: 27474512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivity-induced phrenic and hypoglossal motor facilitation are differentially expressed following intermittent vs. sustained neural apnea.
    Baertsch NA; Baker-Herman TL
    J Appl Physiol (1985); 2013 May; 114(10):1388-95. PubMed ID: 23493368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoic acid receptor alpha activation is necessary and sufficient for plasticity induced by recurrent central apnea.
    Braegelmann KM; Meza A; Agbeh AE; Fields DP; Baker TL
    J Appl Physiol (1985); 2021 Mar; 130(3):836-845. PubMed ID: 33411644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Episodic spinal serotonin receptor activation elicits long-lasting phrenic motor facilitation by an NADPH oxidase-dependent mechanism.
    MacFarlane PM; Mitchell GS
    J Physiol; 2009 Nov; 587(Pt 22):5469-81. PubMed ID: 19805745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal NMDA receptor activation is necessary for de novo, but not the maintenance of, A2a receptor-mediated phrenic motor facilitation.
    Golder FJ
    J Appl Physiol (1985); 2009 Jul; 107(1):217-23. PubMed ID: 19407255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phrenic long-term facilitation requires spinal serotonin receptor activation and protein synthesis.
    Baker-Herman TL; Mitchell GS
    J Neurosci; 2002 Jul; 22(14):6239-46. PubMed ID: 12122082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phrenic long-term facilitation requires NMDA receptors in the phrenic motonucleus in rats.
    McGuire M; Zhang Y; White DP; Ling L
    J Physiol; 2005 Sep; 567(Pt 2):599-611. PubMed ID: 15932891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation.
    Golder FJ; Ranganathan L; Satriotomo I; Hoffman M; Lovett-Barr MR; Watters JJ; Baker-Herman TL; Mitchell GS
    J Neurosci; 2008 Feb; 28(9):2033-42. PubMed ID: 18305238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase Cδ constrains the S-pathway to phrenic motor facilitation elicited by spinal 5-HT
    Perim RR; Fields DP; Mitchell GS
    J Physiol; 2019 Jan; 597(2):481-498. PubMed ID: 30382587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?
    Braegelmann KM; Streeter KA; Fields DP; Baker TL
    Exp Neurol; 2017 Jan; 287(Pt 2):225-234. PubMed ID: 27456270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal 5-HT7 receptors and protein kinase A constrain intermittent hypoxia-induced phrenic long-term facilitation.
    Hoffman MS; Mitchell GS
    Neuroscience; 2013 Oct; 250():632-43. PubMed ID: 23850591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of glutamatergic and serotonergic neurotransmission on diaphragm muscle activity after cervical spinal hemisection.
    Mantilla CB; Gransee HM; Zhan WZ; Sieck GC
    J Neurophysiol; 2017 Sep; 118(3):1732-1738. PubMed ID: 28659464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
    Fields DP; Braegelmann KM; Meza AL; Mickelson CR; Gumnit MG; Baker TL
    J Physiol; 2019 Aug; 597(15):3951-3967. PubMed ID: 31280489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.