These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25104036)
1. Rational design of esterase BioH with enhanced enantioselectivity towards methyl (S)-o-chloromandelate. Gu J; Ye L; Guo F; Lv X; Lu W; Yu H Appl Microbiol Biotechnol; 2015 Feb; 99(4):1709-18. PubMed ID: 25104036 [TBL] [Abstract][Full Text] [Related]
2. Improvements of enzyme activity and enantioselectivity via combined substrate engineering and covalent immobilization. Wang PY; Tsai SW; Chen TL Biotechnol Bioeng; 2008 Oct; 101(3):460-9. PubMed ID: 18435484 [TBL] [Abstract][Full Text] [Related]
3. Compensation of the enantioselectivity-activity trade-off in the directed evolution of an esterase from Rhodobacter sphaeroides by site-directed saturation mutagenesis. Guo F; Xu H; Xu H; Yu H Appl Microbiol Biotechnol; 2013 Apr; 97(8):3355-62. PubMed ID: 23179614 [TBL] [Abstract][Full Text] [Related]
4. Improved enantioselectivity of thermostable esterase from Archaeoglobus fulgidus toward (S)-ketoprofen ethyl ester by directed evolution and characterization of mutant esterases. Kim J; Kim S; Yoon S; Hong E; Ryu Y Appl Microbiol Biotechnol; 2015 Aug; 99(15):6293-301. PubMed ID: 25661815 [TBL] [Abstract][Full Text] [Related]
5. Controlling enantioselectivity of esterase in asymmetric hydrolysis of aryl prochiral diesters by introducing aromatic interactions. Guo F; Franzen S; Ye L; Gu J; Yu H Biotechnol Bioeng; 2014 Sep; 111(9):1729-39. PubMed ID: 24737244 [TBL] [Abstract][Full Text] [Related]
6. Double substituted variant of Bacillus amyloliquefaciens esterase with enhanced enantioselectivity and high activity towards 1-(3',4'-methylenedioxyphenyl)ethyl acetate. Liu JY; Bian HP; Tang Y; Bai YP; Xu JH Appl Microbiol Biotechnol; 2015 Feb; 99(4):1701-8. PubMed ID: 25104035 [TBL] [Abstract][Full Text] [Related]
7. Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Park S; Morley KL; Horsman GP; Holmquist M; Hult K; Kazlauskas RJ Chem Biol; 2005 Jan; 12(1):45-54. PubMed ID: 15664514 [TBL] [Abstract][Full Text] [Related]
8. Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens. Schliessmann A; Hidalgo A; Berenguer J; Bornscheuer UT Chembiochem; 2009 Dec; 10(18):2920-3. PubMed ID: 19847842 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure and characterization of esterase Est25 mutants reveal improved enantioselectivity toward (S)-ketoprofen ethyl ester. Kim J; Seok SH; Hong E; Yoo TH; Seo MD; Ryu Y Appl Microbiol Biotechnol; 2017 Mar; 101(6):2333-2342. PubMed ID: 27915377 [TBL] [Abstract][Full Text] [Related]
10. Enhanced enantioselectivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution. Ma J; Wu L; Guo F; Gu J; Tang X; Jiang L; Liu J; Zhou J; Yu H Appl Microbiol Biotechnol; 2013 Jun; 97(11):4897-906. PubMed ID: 22987200 [TBL] [Abstract][Full Text] [Related]
11. Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl 3bromo-2-methylpropanoate and ethyl 3phenylbutyrate. Horsman GP; Liu AM; Henke E; Bornscheuer UT; Kazlauskas RJ Chemistry; 2003 May; 9(9):1933-9. PubMed ID: 12740839 [TBL] [Abstract][Full Text] [Related]
12. Structural investigation of the enantioselectivity and thermostability mechanisms of esterase RhEst1. Chen Q; Yu HL; Cheng X; Xu JH J Mol Graph Model; 2018 Oct; 85():182-189. PubMed ID: 30227363 [TBL] [Abstract][Full Text] [Related]
13. The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity. Palm GJ; Fernández-Álvaro E; Bogdanović X; Bartsch S; Sczodrok J; Singh RK; Böttcher D; Atomi H; Bornscheuer UT; Hinrichs W Appl Microbiol Biotechnol; 2011 Aug; 91(4):1061-72. PubMed ID: 21614503 [TBL] [Abstract][Full Text] [Related]
14. Control of lipase enantioselectivity by engineering the substrate binding site and access channel. Lafaquière V; Barbe S; Puech-Guenot S; Guieysse D; Cortés J; Monsan P; Siméon T; André I; Remaud-Siméon M Chembiochem; 2009 Nov; 10(17):2760-71. PubMed ID: 19816890 [TBL] [Abstract][Full Text] [Related]
15. Highly enantioselective and efficient synthesis of methyl (R)-o-chloromandelate with recombinant E. coli: toward practical and green access to clopidogrel. Ema T; Okita N; Ide S; Sakai T Org Biomol Chem; 2007 Apr; 5(8):1175-6. PubMed ID: 17406715 [TBL] [Abstract][Full Text] [Related]
16. Improved enantioselectivity of Wu X; Yang S; Yu H; Ye L; Su B; Shao Z Biosci Biotechnol Biochem; 2019 Jul; 83(7):1263-1269. PubMed ID: 30938230 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering. Nobili A; Tao Y; Pavlidis IV; van den Bergh T; Joosten HJ; Tan T; Bornscheuer UT Chembiochem; 2015 Mar; 16(5):805-10. PubMed ID: 25711719 [TBL] [Abstract][Full Text] [Related]
18. A novel method of producing the pharmaceutical intermediate (R)-2-chloromandelic acid by bioconversion. Yamamura ET; Kita S Biosci Biotechnol Biochem; 2019 Feb; 83(2):309-317. PubMed ID: 30343629 [TBL] [Abstract][Full Text] [Related]
19. Use of 'small but smart' libraries to enhance the enantioselectivity of an esterase from Bacillus stearothermophilus towards tetrahydrofuran-3-yl acetate. Nobili A; Gall MG; Pavlidis IV; Thompson ML; Schmidt M; Bornscheuer UT FEBS J; 2013 Jul; 280(13):3084-93. PubMed ID: 23331978 [TBL] [Abstract][Full Text] [Related]
20. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]