BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25104072)

  • 1. Study of cell differentiation by phylogenetic analysis using histone modification data.
    Nair NU; Lin Y; Manasovska A; Antic J; Grnarova P; Sahu AD; Bucher P; Moret BM
    BMC Bioinformatics; 2014 Aug; 15(1):269. PubMed ID: 25104072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A maximum-likelihood approach for building cell-type trees by lifting.
    Nair NU; Hunter L; Shao M; Grnarova P; Lin Y; Bucher P; E Moret BM
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):14. PubMed ID: 26819094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quartet-based inference of cell differentiation trees from ChIP-Seq histone modification data.
    Moumi NA; Das B; Tasnim Promi Z; Bristy NA; Bayzid MS
    PLoS One; 2019; 14(9):e0221270. PubMed ID: 31557185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data.
    Xing H; Mo Y; Liao W; Zhang MQ
    PLoS Comput Biol; 2012; 8(7):e1002613. PubMed ID: 22844240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NUCLIZE for quantifying epigenome: generating histone modification data at single-nucleosome resolution using genuine nucleosome positions.
    Zheng D; Trynda J; Sun Z; Li Z
    BMC Genomics; 2019 Jul; 20(1):541. PubMed ID: 31266464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic analysis: ChIP-chip and ChIP-seq.
    Pellegrini M; Ferrari R
    Methods Mol Biol; 2012; 802():377-87. PubMed ID: 22130894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells.
    Shin JH; Xu L; Li RW; Gao Y; Bickhart D; Liu GE; Baldwin R; Li CJ
    Anim Genet; 2014 Aug; 45 Suppl 1():40-50. PubMed ID: 24990294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring changes in histone modification during cell differentiation by ancestral state estimation based on phylogenetic trees of cell types: Human hematopoiesis as a model case.
    Koyanagi KO
    Gene X; 2019 Sep; 3():100021. PubMed ID: 32550550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone ChIP-Seq identifies differential enhancer usage during chondrogenesis as critical for defining cell-type specificity.
    Cheung K; Barter MJ; Falk J; Proctor CJ; Reynard LN; Young DA
    FASEB J; 2020 Apr; 34(4):5317-5331. PubMed ID: 32058623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.
    Rye M; Sætrom P; Håndstad T; Drabløs F
    BMC Biol; 2011 Nov; 9():80. PubMed ID: 22115494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.
    Hussey SG; Mizrachi E; Groover A; Berger DK; Myburg AA
    BMC Plant Biol; 2015 May; 15():117. PubMed ID: 25957781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells.
    Mukherjee S; Hsieh J
    Methods Mol Biol; 2018; 1686():265-286. PubMed ID: 29030827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Integrated and Semiautomated Microscaled Approach to Profile Cis-Regulatory Elements by Histone Modification ChIP-Seq for Large-Scale Epigenetic Studies.
    Youhanna Jankeel D; Cayford J; Schmiedel BJ; Vijayanand P; Seumois G
    Methods Mol Biol; 2018; 1799():303-326. PubMed ID: 29956160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Histone Modifications Reveals a Role of H2b Monoubiquitination in Transcriptional Regulation of
    Lai F; Cheng Y; Zou J; Wang H; Zhu W; Wang X; Cheng H; Zhou R
    Int J Biol Sci; 2021; 17(8):2009-2020. PubMed ID: 34131402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A global genome segmentation method for exploration of epigenetic patterns.
    Steiner L; Hopp L; Wirth H; Galle J; Binder H; Prohaska SJ; Rohlf T
    PLoS One; 2012; 7(10):e46811. PubMed ID: 23077526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epimetheus - a multi-profile normalizer for epigenomic sequencing data.
    Saleem MM; Mendoza-Parra MA; Cholley PE; Blum M; Gronemeyer H
    BMC Bioinformatics; 2017 May; 18(1):259. PubMed ID: 28499349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications.
    Zhu B; Hsieh YP; Murphy TW; Zhang Q; Naler LB; Lu C
    Nat Protoc; 2019 Dec; 14(12):3366-3394. PubMed ID: 31666743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells.
    Gonzales-Cope M; Sidoli S; Bhanu NV; Won KJ; Garcia BA
    BMC Genomics; 2016 Feb; 17():95. PubMed ID: 26847871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.