BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25104311)

  • 1. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli.
    Lee W; Kim KJ; Lee DG
    Biometals; 2014 Dec; 27(6):1191-201. PubMed ID: 25104311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lupeol-induced nitric oxide elicits apoptosis-like death within Escherichia coli in a DNA fragmentation-independent manner.
    Kim H; Lee DG
    Biochem J; 2021 Feb; 478(4):855-869. PubMed ID: 33522568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coprisin exerts antibacterial effects by inducing apoptosis-like death in Escherichia coli.
    Choi H; Hwang JS; Lee DG
    IUBMB Life; 2016 Jan; 68(1):72-8. PubMed ID: 26663147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli.
    Yun DG; Lee DG
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5505-14. PubMed ID: 26960318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magainin 2 induces bacterial cell death showing apoptotic properties.
    Lee W; Lee DG
    Curr Microbiol; 2014 Dec; 69(6):794-801. PubMed ID: 25023640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depletion of reactive oxygen species induced by chlorogenic acid triggers apoptosis-like death in Escherichia coli.
    Lee B; Lee DG
    Free Radic Res; 2018 May; 52(5):605-615. PubMed ID: 29580121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7.
    Xu H; Qu F; Xu H; Lai W; Andrew Wang Y; Aguilar ZP; Wei H
    Biometals; 2012 Feb; 25(1):45-53. PubMed ID: 21805351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli.
    Lee H; Lee DG
    Colloids Surf B Biointerfaces; 2018 Jul; 167():1-7. PubMed ID: 29625418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes.
    Lee B; Hwang JS; Lee DG
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1417-1427. PubMed ID: 30554389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.
    Li WR; Xie XB; Shi QS; Zeng HY; Ou-Yang YS; Chen YB
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1115-22. PubMed ID: 19669753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways.
    Song Z; Wu Y; Wang H; Han H
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():255-263. PubMed ID: 30889699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance.
    Du H; Lo TM; Sitompul J; Chang MW
    Biochem Biophys Res Commun; 2012 Aug; 424(4):657-62. PubMed ID: 22771582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation.
    Bao H; Yu X; Xu C; Li X; Li Z; Wei D; Liu Y
    PLoS One; 2015; 10(3):e0122535. PubMed ID: 25822182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial resistance to silver nanoparticles and how to overcome it.
    Panáček A; Kvítek L; Smékalová M; Večeřová R; Kolář M; Röderová M; Dyčka F; Šebela M; Prucek R; Tomanec O; Zbořil R
    Nat Nanotechnol; 2018 Jan; 13(1):65-71. PubMed ID: 29203912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.
    Dror-Ehre A; Mamane H; Belenkova T; Markovich G; Adin A
    J Colloid Interface Sci; 2009 Nov; 339(2):521-6. PubMed ID: 19726047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.
    Yoon KY; Hoon Byeon J; Park JH; Hwang J
    Sci Total Environ; 2007 Feb; 373(2-3):572-5. PubMed ID: 17173953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial and DNA degradation potential of silver nanoparticles synthesized via green route.
    Manna DK; Mandal AK; Sen IK; Maji PK; Chakraborti S; Chakraborty R; Islam SS
    Int J Biol Macromol; 2015 Sep; 80():455-9. PubMed ID: 26188293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells.
    Baldi F; Daniele S; Gallo M; Paganelli S; Battistel D; Piccolo O; Faleri C; Puglia AM; Gallo G
    Biometals; 2016 Apr; 29(2):321-31. PubMed ID: 26886276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.
    Kaviya S; Santhanalakshmi J; Viswanathan B; Muthumary J; Srinivasan K
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):594-8. PubMed ID: 21536485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction.
    Seong M; Lee DG
    Curr Microbiol; 2017 Jun; 74(6):661-670. PubMed ID: 28321528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.