These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 25104386)
41. Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Siddique T; Penner T; Semple K; Foght JM Environ Sci Technol; 2011 Jul; 45(13):5892-9. PubMed ID: 21644510 [TBL] [Abstract][Full Text] [Related]
42. Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. Scherr KE; Lundaa T; Klose V; Bochmann G; Loibner AP J Biotechnol; 2012 Feb; 157(4):564-72. PubMed ID: 21939698 [TBL] [Abstract][Full Text] [Related]
43. Microbial communities involved in methane production from hydrocarbons in oil sands tailings. Siddique T; Penner T; Klassen J; Nesbø C; Foght JM Environ Sci Technol; 2012 Sep; 46(17):9802-10. PubMed ID: 22894132 [TBL] [Abstract][Full Text] [Related]
44. Evidence for in situ crude oil biodegradation after the Prestige oil spill. Medina-Bellver JI; Marín P; Delgado A; Rodríguez-Sánchez A; Reyes E; Ramos JL; Marqués S Environ Microbiol; 2005 Jun; 7(6):773-9. PubMed ID: 15892696 [TBL] [Abstract][Full Text] [Related]
45. Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium. Xu N; Bao M; Sun P; Li Y Bioresour Technol; 2013 Dec; 149():22-30. PubMed ID: 24084200 [TBL] [Abstract][Full Text] [Related]
46. [Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery]. Nazina TN; Grigor'ian AA; Shestakova NM; Babich TL; Ivoĭlov VS; Feng Q; Ni F; Wang J; She Y; Xiang T; Luo Z; Beliaev SS; Ivanov MV Mikrobiologiia; 2007; 76(3):329-39. PubMed ID: 17633408 [TBL] [Abstract][Full Text] [Related]
47. Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Coulon F; McKew BA; Osborn AM; McGenity TJ; Timmis KN Environ Microbiol; 2007 Jan; 9(1):177-86. PubMed ID: 17227422 [TBL] [Abstract][Full Text] [Related]
48. Oil reservoirs, an exceptional habitat for microorganisms. Pannekens M; Kroll L; Müller H; Mbow FT; Meckenstock RU N Biotechnol; 2019 Mar; 49():1-9. PubMed ID: 30502541 [TBL] [Abstract][Full Text] [Related]
50. Oil-utilizing bacteria associated with fish from the Arabian Gulf. Radwan SS; Al-Hasan RH; Mahmoud HM; Eliyas M J Appl Microbiol; 2007 Dec; 103(6):2160-7. PubMed ID: 17953689 [TBL] [Abstract][Full Text] [Related]
51. [Evolution of hydrocarbons and bacterial activity in the marine sediments contaminated by crude oil overflow and treated]. Bodennec G; Desmarquest JP; Jensen B; Kantin R Int J Environ Anal Chem; 1987; 29(3):153-78. PubMed ID: 3596891 [TBL] [Abstract][Full Text] [Related]
52. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Duncan KE; Gieg LM; Parisi VA; Tanner RS; Tringe SG; Bristow J; Suflita JM Environ Sci Technol; 2009 Oct; 43(20):7977-84. PubMed ID: 19921923 [TBL] [Abstract][Full Text] [Related]
53. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria. Chaerun SK; Tazaki K; Asada R; Kogure K Environ Int; 2004 Sep; 30(7):911-22. PubMed ID: 15196839 [TBL] [Abstract][Full Text] [Related]
54. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes. Itävaara M; Salavirta H; Marjamaa K; Ruskeeniemi T Adv Appl Microbiol; 2016; 94():1-77. PubMed ID: 26917241 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Nikolopoulou M; Pasadakis N; Kalogerakis N Mar Pollut Bull; 2013 Jul; 72(1):165-73. PubMed ID: 23660443 [TBL] [Abstract][Full Text] [Related]
56. [The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants]. Karpenko EV; Vil'danova-Martsishin RI; Shcheglova NS; Pirog TP; Voloshina IN Prikl Biokhim Mikrobiol; 2006; 42(2):175-9. PubMed ID: 16761570 [TBL] [Abstract][Full Text] [Related]
57. Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Zhang Z; Gai L; Hou Z; Yang C; Ma C; Wang Z; Sun B; He X; Tang H; Xu P Bioresour Technol; 2010 Nov; 101(21):8452-6. PubMed ID: 20573503 [TBL] [Abstract][Full Text] [Related]
58. Anaerobic biodegradation of partially hydrolyzed polyacrylamide in long-term methanogenic enrichment cultures from production water of oil reservoirs. Hu H; Liu JF; Li CY; Yang SZ; Gu JD; Mu BZ Biodegradation; 2018 Jun; 29(3):233-243. PubMed ID: 29502248 [TBL] [Abstract][Full Text] [Related]
59. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3. Sabina K; Fayidh MA; Archana G; Sivarajan M; Babuskin S; Babu PA; Radha KK; Sukumar M Environ Technol; 2014; 35(17-20):2194-203. PubMed ID: 25145172 [TBL] [Abstract][Full Text] [Related]
60. [Methane-generating potential of coal samples with different maturity]. He Q; Ding C; Li G; Cheng H; Cheng L; Zhang H Wei Sheng Wu Xue Bao; 2013 Dec; 53(12):1307-17. PubMed ID: 24697103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]