These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25104408)

  • 1. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography.
    Peña AF; Doronin A; Tuchin VV; Meglinski I
    J Biomed Opt; 2014 Aug; 19(8):086002. PubMed ID: 25104408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of the interaction of low-frequency electric fields with biological tissues by optical coherence tomography.
    Peña AF; Devine J; Doronin A; Meglinski I
    Opt Lett; 2013 Jul; 38(14):2629-31. PubMed ID: 23939131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging the electro-kinetic response of biological tissues with optical coherence tomography.
    Wawrzyn K; Demidov V; Vuong B; Harduar MK; Sun C; Yang VX; Doganay O; Toronov V; Xu Y
    Opt Lett; 2013 Jul; 38(14):2572-4. PubMed ID: 23939115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography.
    Li C; Guan G; Li S; Huang Z; Wang RK
    J Biomed Opt; 2012 May; 17(5):057002. PubMed ID: 22612141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices.
    Luis A
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1063-8. PubMed ID: 17361292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal-to-noise ratio study of full-field fourier-domain optical coherence tomography.
    Blazkiewicz P; Gourlay M; Tucker JR; Rakic AD; Zvyagin AV
    Appl Opt; 2005 Dec; 44(36):7722-9. PubMed ID: 16381518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of optical sources in the near infrared for optical coherence tomography applications.
    Carrion L; Lestrade M; Xu Z; Touma G; Maciejko R; Bertrand M
    J Biomed Opt; 2007; 12(1):014017. PubMed ID: 17343492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitatively characterizing fluctuations of dielectric susceptibility of tissue with Fourier domain optical coherence tomography.
    Gao W
    J Opt Soc Am A Opt Image Sci Vis; 2010 Dec; 27(12):2588-92. PubMed ID: 21119743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion-based optical coherence tomography OCT measurement of mixture concentrations.
    Bagherzadeh SM; Grajciar B; Hitzenberger CK; Pircher M; Fercher AF
    Opt Lett; 2007 Oct; 32(20):2924-6. PubMed ID: 17938654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage.
    Bykov A; Hautala T; Kinnunen M; Popov A; Karhula S; Saarakkala S; Nieminen MT; Tuchin V; Meglinski I
    J Biophotonics; 2016 Mar; 9(3):270-5. PubMed ID: 26097171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping tissue optical attenuation to identify cancer using optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):657-64. PubMed ID: 20426168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography.
    Tomlins PH; Wang RK
    J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1897-907. PubMed ID: 16835647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage.
    Huang YP; Saarakkala S; Toyras J; Wang LK; Jurvelin JS; Zheng YP
    Phys Med Biol; 2011 Jan; 56(2):491-509. PubMed ID: 21191151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm.
    Hojjatoleslami SA; Avanaki MR; Podoleanu AG
    Appl Opt; 2013 Aug; 52(23):5663-70. PubMed ID: 23938416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography.
    van der Meer FJ; Faber DJ; Cilesiz I; van Gemert MJ; van Leeuwen TG
    J Biomed Opt; 2006; 11(4):041120. PubMed ID: 16965148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution frequency-domain second-harmonic optical coherence tomography.
    Su J; Tomov IV; Jiang Y; Chen Z
    Appl Opt; 2007 Apr; 46(10):1770-5. PubMed ID: 17356620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of hyperosmotic agents and sonophoresis on breast tissue optical properties and permeability studied with spectral domain optical coherence tomography.
    Zhu Z; Wei H; Wu G; Yang H; He Y; Xie S
    J Biomed Opt; 2012 Aug; 17(8):086002. PubMed ID: 23224189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography.
    Lee P; Gao W; Zhang X
    Appl Opt; 2010 Jun; 49(18):3538-44. PubMed ID: 20563206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.
    Zhang J; Nelson JS; Chen Z
    Opt Lett; 2005 Jan; 30(2):147-9. PubMed ID: 15675695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography.
    He Y; Wang RK
    J Biomed Opt; 2004; 9(1):200-6. PubMed ID: 14715074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.