BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

747 related articles for article (PubMed ID: 25104546)

  • 1. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compressible anisotropic hyperelastic model with
    Wang MN; Liu FJ
    Comput Methods Biomech Biomed Engin; 2020 Dec; 23(16):1277-1286. PubMed ID: 32692257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficiencies in numerical models of anisotropic nonlinearly elastic materials.
    Ní Annaidh A; Destrade M; Gilchrist MD; Murphy JG
    Biomech Model Mechanobiol; 2013 Aug; 12(4):781-91. PubMed ID: 23011411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic hyperelastic behavior of soft biological tissues.
    Chen ZW; Joli P; Feng ZQ
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1436-44. PubMed ID: 25127194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational study of stent performance by considering vessel anisotropy and residual stresses.
    Schiavone A; Zhao LG
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():307-16. PubMed ID: 26952428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new formulation of slight compressibility for arterial tissue and its Finite Element implementation.
    Gilchrist MD; MacManus D; Murphy JG; Pierrat B
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):403-414. PubMed ID: 27707002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation.
    Limbert G
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating fiber recruitment in hyperelastic modeling of vascular tissues by means of kinematic average.
    Lu J; He X
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1833-1850. PubMed ID: 34173928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric locking free 3D finite element for modelling of anisotropic visco-hyperelastic behaviour of anterior cruciate ligament.
    Bijalwan A; Patel BP; Marieswaran M; Kalyanasundaram D
    J Biomech; 2018 May; 73():1-8. PubMed ID: 29599040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.
    Zhurov AI; Limbert G; Aeschlimann DP; Middleton J
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):223-35. PubMed ID: 17558650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.
    Wu T; Hung AP; Hunter P; Mithraratne K
    Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer.
    Nguyen N; Nath N; Deseri L; Tzeng E; Velankar SS; Pocivavsek L
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2375-2395. PubMed ID: 32535739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    J Mech Behav Biomed Mater; 2013 Feb; 18():167-80. PubMed ID: 23274398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates.
    Trotta A; Ní Annaidh A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103381. PubMed ID: 31430703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.