These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25105236)

  • 1. Ozone tolerance in lichens: a possible explanation from biochemical to physiological level using Flavoparmelia caperata as test organism.
    Pellegrini E; Bertuzzi S; Candotto Carniel F; Lorenzini G; Nali C; Tretiach M
    J Plant Physiol; 2014 Oct; 171(16):1514-23. PubMed ID: 25105236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ozone and desiccation tolerance in chlorolichens are intimately connected: a case study based on two species with different ecology.
    Bertuzzi S; Pellegrini E; Candotto Carniel F; Incerti G; Lorenzini G; Nali C; Tretiach M
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8089-8103. PubMed ID: 28646314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoplastic antioxidant enzyme responses to chronic free-air ozone exposure in two different ozone-sensitive wheat cultivars.
    Wang J; Zeng Q; Zhu J; Chen C; Liu G; Tang H
    Plant Physiol Biochem; 2014 Sep; 82():183-93. PubMed ID: 24973575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ambient NOx on chlorophyll a fluorescence in transplanted Flavoparmelia caperata (Lichen).
    Tretiach M; Piccotto M; Baruffo L
    Environ Sci Technol; 2007 Apr; 41(8):2978-84. PubMed ID: 17533867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea.
    Alvarez R; del Hoyo A; García-Breijo F; Reig-Armiñana J; del Campo EM; Guéra A; Barreno E; Casano LM
    J Plant Physiol; 2012 Dec; 169(18):1797-806. PubMed ID: 22841624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biphasic responses of nanomaterial fullerene on stomatal movement, water status, chlorophyll a fluorescence transient, radical scavenging system and aquaporin-related gene expression in Zea mays under cobalt stress.
    Ozfidan-Konakci C; Alp FN; Arikan B; Elbasan F; Cavusoglu H; Yildiztugay E
    Sci Total Environ; 2022 Jun; 826():154213. PubMed ID: 35240187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties.
    Caregnato FF; Bortolin RC; Divan Junior AM; Moreira JC
    Chemosphere; 2013 Sep; 93(2):320-30. PubMed ID: 23714146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems.
    Mahmud JA; Hasanuzzaman M; Nahar K; Rahman A; Hossain MS; Fujita M
    Ecotoxicology; 2017 Jul; 26(5):675-690. PubMed ID: 28409415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl jasmonate and ozone affect the antioxidant system and the quality of wine grape during postharvest partial dehydration.
    Modesti M; Petriccione M; Forniti R; Zampella L; Scortichini M; Mencarelli F
    Food Res Int; 2018 Oct; 112():369-377. PubMed ID: 30131148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Old-growth forest versus generalist lichens: Sensitivity to prolonged desiccation stress and photosynthesis reactivation rate upon rehydration.
    Osyczka P; Kościelniak R; Stanek M
    Mycologia; 2024; 116(1):31-43. PubMed ID: 38039398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis.
    Jin X; Liu T; Xu J; Gao Z; Hu X
    BMC Plant Biol; 2019 Feb; 19(1):48. PubMed ID: 30709373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water availability modifies tolerance to photo-oxidative pollutants in transplants of the lichen Flavoparmelia caperata.
    Tretiach M; Pavanetto S; Pittao E; Sanità di Toppi L; Piccotto M
    Oecologia; 2012 Feb; 168(2):589-99. PubMed ID: 21870247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between water status and photosystem functionality in a chlorolichen and its isolated photobiont.
    Petruzzellis F; Savi T; Bertuzzi S; Montagner A; Tretiach M; Nardini A
    Planta; 2018 Mar; 247(3):705-714. PubMed ID: 29170912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone.
    Wu YX; von TA
    Environ Pollut; 2002; 116(1):37-47. PubMed ID: 11808554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.
    Rao MV; Paliyath G; Ormrod DP
    Plant Physiol; 1996 Jan; 110(1):125-36. PubMed ID: 8587977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response.
    Mishra AK; Agrawal SB
    Protoplasma; 2015 May; 252(3):797-811. PubMed ID: 25326391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance to Cyclic Desiccation in Lichen Microalgae is Related to Habitat Preference and Involves Specific Priming of the Antioxidant System.
    Hell AF; Gasulla F; Gonzï Lez-Hourcade MA; Del Campo EM; Centeno DC; Casano LM
    Plant Cell Physiol; 2019 Aug; 60(8):1880-1891. PubMed ID: 31127294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ROS production and its detoxification in early and late sown cultivars of wheat under future O
    Yadav DS; Rai R; Mishra AK; Chaudhary N; Mukherjee A; Agrawal SB; Agrawal M
    Sci Total Environ; 2019 Apr; 659():200-210. PubMed ID: 30599339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and ultrastructural effects of acute ozone fumigation in the lichen Xanthoria parietina: the role of parietin and hydration state.
    Vannini A; Paoli L; Ceccarelli S; Sorbo S; Basile A; Carginale V; Nali C; Lorenzini G; Pica M; Loppi S
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8104-8112. PubMed ID: 28702906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How sensitive is Melissa officinalis to realistic ozone concentrations?
    Döring AS; Pellegrini E; Campanella A; Trivellini A; Gennai C; Petersen M; Nali C; Lorenzini G
    Plant Physiol Biochem; 2014 Jan; 74():156-64. PubMed ID: 24321873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.