These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 25105621)
1. Revisiting the Saffman-Taylor experiment: imbibition patterns and liquid-entrainment transitions. Levaché B; Bartolo D Phys Rev Lett; 2014 Jul; 113(4):044501. PubMed ID: 25105621 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Inverse Saffman-Taylor Experiments with Particles Lead to Capillarity Driven Fingering Instabilities. Bihi I; Baudoin M; Butler JE; Faille C; Zoueshtiagh F Phys Rev Lett; 2016 Jul; 117(3):034501. PubMed ID: 27472115 [TBL] [Abstract][Full Text] [Related]
4. Fingering instabilities of a reactive micellar interface. Podgorski T; Sostarecz MC; Zorman S; Belmonte A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016202. PubMed ID: 17677538 [TBL] [Abstract][Full Text] [Related]
5. Bridge from diffusion-limited aggregation to the Saffman-Taylor problem. Bogoyavlenskiy VA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):045305. PubMed ID: 11308903 [TBL] [Abstract][Full Text] [Related]
6. Forced Imbibition in Porous Media: A Fourfold Scenario. Odier C; Levaché B; Santanach-Carreras E; Bartolo D Phys Rev Lett; 2017 Nov; 119(20):208005. PubMed ID: 29219327 [TBL] [Abstract][Full Text] [Related]
7. Manipulation of the Saffman-Taylor instability: a curvature-dependent surface tension approach. Rocha FM; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013017. PubMed ID: 23410436 [TBL] [Abstract][Full Text] [Related]
8. Saffman-Taylor-like instability in a narrow gap induced by dielectric barrier discharge. Hou SY; Chu HY Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013101. PubMed ID: 26274288 [TBL] [Abstract][Full Text] [Related]
9. Destabilization of a Saffman-Taylor fingerlike pattern in a granular suspension. Chevalier C; Lindner A; Clément E Phys Rev Lett; 2007 Oct; 99(17):174501. PubMed ID: 17995336 [TBL] [Abstract][Full Text] [Related]
10. Two-phase fluid displacement and interfacial instabilities under elastic membranes. Al-Housseiny TT; Christov IC; Stone HA Phys Rev Lett; 2013 Jul; 111(3):034502. PubMed ID: 23909329 [TBL] [Abstract][Full Text] [Related]
11. Pattern formation during deformation of a confined viscoelastic layer: from a viscous liquid to a soft elastic solid. Nase J; Lindner A; Creton C Phys Rev Lett; 2008 Aug; 101(7):074503. PubMed ID: 18764541 [TBL] [Abstract][Full Text] [Related]
12. Saffman-Taylor instability of viscoelastic fluids: from viscous fingering to elastic fractures. Mora S; Manna M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026305. PubMed ID: 20365649 [TBL] [Abstract][Full Text] [Related]
13. Mean-field diffusion-limited aggregation: a "density" model for viscous fingering phenomena. Bogoyavlenskiy VA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066303. PubMed ID: 11736272 [TBL] [Abstract][Full Text] [Related]
14. Saffman-Taylor problem on a sphere. Parisio F; Moraes F; Miranda JA; Widom M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036307. PubMed ID: 11308768 [TBL] [Abstract][Full Text] [Related]
15. Viscous fingering in volatile thin films. Agam O Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021603. PubMed ID: 19391757 [TBL] [Abstract][Full Text] [Related]
16. Detachment forces during parallel-plate gap separation mediated by a simple yield-stress fluid. de Oliveira Pereira VH; Barros W Eur Phys J E Soft Matter; 2024 Jan; 47(1):7. PubMed ID: 38261239 [TBL] [Abstract][Full Text] [Related]
17. Viscous fingering and the shape of an electronic droplet in the quantum Hall regime. Agam O; Bettelheim E; Wiegmann P; Zabrodin A Phys Rev Lett; 2002 Jun; 88(23):236801. PubMed ID: 12059386 [TBL] [Abstract][Full Text] [Related]
18. Interface pattern formation in nonlinear dissipative systems. Trivedi R; Liu S; Williams S Nat Mater; 2002 Nov; 1(3):157-9. PubMed ID: 12618802 [TBL] [Abstract][Full Text] [Related]
19. Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces. Ledesma-Aguilar R; Hernández-Machado A; Pagonabarraga I Phys Rev Lett; 2013 Jun; 110(26):264502. PubMed ID: 23848879 [TBL] [Abstract][Full Text] [Related]
20. Saffman-Taylor streamers: mutual finger interaction in spark formation. Luque A; Brau F; Ebert U Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016206. PubMed ID: 18764034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]