These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25105730)

  • 1. Optimization and scale-up of oligonucleotide synthesis in packed bed reactors using computational fluid dynamics modeling.
    Wolfrum C; Josten A; Götz P
    Biotechnol Prog; 2014; 30(5):1048-56. PubMed ID: 25105730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.
    Ranganathan P; Gu S
    Bioresour Technol; 2016 Aug; 213():333-341. PubMed ID: 26927234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamic simulation of axial and radial flow membrane chromatography: mechanisms of non-ideality and validation of the zonal rate model.
    Ghosh P; Vahedipour K; Lin M; Vogel JH; Haynes C; von Lieres E
    J Chromatogr A; 2013 Aug; 1305():114-22. PubMed ID: 23885666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.
    Liu H; Li M
    Int J Pharm; 2014 Nov; 475(1-2):256-69. PubMed ID: 25181553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.
    Schmitt V; Dufresne M; Vazquez J; Fischer M; Morin A
    Water Sci Technol; 2013; 68(7):1574-81. PubMed ID: 24135107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Capture Simulation Initiative: a case study in multiscale modeling and new challenges.
    Miller DC; Syamlal M; Mebane DS; Storlie C; Bhattacharyya D; Sahinidis NV; Agarwal D; Tong C; Zitney SE; Sarkar A; Sun X; Sundaresan S; Ryan E; Engel D; Dale C
    Annu Rev Chem Biomol Eng; 2014; 5():301-23. PubMed ID: 24797817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating two process scale chromatography column header designs using CFD.
    Johnson C; Natarajan V; Antoniou C
    Biotechnol Prog; 2014; 30(4):837-44. PubMed ID: 24616438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Modeling of Multiphase Reactors.
    Joshi JB; Nandakumar K
    Annu Rev Chem Biomol Eng; 2015; 6():347-78. PubMed ID: 26134737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.
    Hariharan P; D'Souza GA; Horner M; Morrison TM; Malinauskas RA; Myers MR
    PLoS One; 2017; 12(6):e0178749. PubMed ID: 28594889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hydrodynamics and volumetric power input in microtiter plates for the scale-up of downstream operations.
    Montes-Serrano I; Satzer P; Jungbauer A; Dürauer A
    Biotechnol Bioeng; 2022 Feb; 119(2):523-534. PubMed ID: 34741535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of the dynamic packing behavior of preparative chromatography columns via discrete particle modeling.
    Dorn M; Hekmat D
    Biotechnol Prog; 2016 Mar; 32(2):363-71. PubMed ID: 26588806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Fluid Dynamics for Fixed Bed Reactor Design.
    Dixon AG; Partopour B
    Annu Rev Chem Biomol Eng; 2020 Jun; 11():109-130. PubMed ID: 32151159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of landfill aeration using computational fluid dynamics.
    Fytanidis DK; Voudrias EA
    Waste Manag; 2014 Apr; 34(4):804-16. PubMed ID: 24525420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500.
    Janiga G
    Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of computational fluid dynamics applications in biotechnology processes.
    Sharma C; Malhotra D; Rathore AS
    Biotechnol Prog; 2011; 27(6):1497-1510. PubMed ID: 22235483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of CFD modelling at a full-scale ozonation plant for the removal of micropollutants from secondary effluent.
    Launer M; Lyko S; Fahlenkamp H; Jagemann P; Ehrhard P
    Water Sci Technol; 2013; 68(6):1336-44. PubMed ID: 24056432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of computational fluid dynamics as a tool for establishing process design space for mixing in a bioreactor.
    Rathore AS; Sharma C; Persad AA
    Biotechnol Prog; 2012; 28(2):382-91. PubMed ID: 22083975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra scale-down approach for the prediction of full-scale recovery of ovine polycolonal immunoglobulins used in the manufacture of snake venom-specific Fab fragment.
    Neal G; Christie J; Keshavarz-Moore E; Shamlou PA
    Biotechnol Bioeng; 2003 Jan; 81(2):149-57. PubMed ID: 12451551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Fenton reaction for elimination of Acid Yellow 36 in both fluidized-bed and stirred-tank reactors: Computational fluid dynamics versus experiments.
    Farshchi ME; Aghdasinia H; Khataee A
    Water Res; 2019 Mar; 151():203-214. PubMed ID: 30594832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.
    Passos RG; von Sperling M; Ribeiro TB
    Water Sci Technol; 2014; 70(3):569-75. PubMed ID: 25098890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.