These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25105743)

  • 1. Tunable indirect to direct band gap transition of monolayer Sc₂CO₂ by the strain effect.
    Lee Y; Cho SB; Chung YC
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14724-8. PubMed ID: 25105743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field.
    Lee Y; Hwang Y; Cho SB; Chung YC
    Phys Chem Chem Phys; 2014 Dec; 16(47):26273-8. PubMed ID: 25363478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving type I, II, and III heterojunctions using functionalized MXene.
    Lee Y; Hwang Y; Chung YC
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7163-9. PubMed ID: 25791222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Single-Layer Sodium Phosphidostannate(II): Strain-Tunable Electronic Structure, Excellent Mechanical Flexibility, and an Ideal Gap for Photovoltaics.
    Jiao Y; Ma F; Gao G; Bell J; Frauenheim T; Du A
    J Phys Chem Lett; 2015 Jul; 6(14):2682-7. PubMed ID: 26266848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Properties of Novel Ga
    Liao Y; Zhang Z; Gao Z; Qian Q; Hua M
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30659-30669. PubMed ID: 32519544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional aluminum phosphide semiconductor with tunable direct band gap for nanoelectric applications.
    Yang X; Mao C; Hu Y; Cao H; Zhang Y; Zhao D; Chen Z; Xie M
    RSC Adv; 2020 Jun; 10(42):25170-25176. PubMed ID: 35517490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-dependent anisotropic nonlinear optical response in two-dimensional functionalized MXene Sc
    He C; Zhao Q; Huang Y; Du W; Zhu L; Zhou Y; Zhang S; Xu X
    Phys Chem Chem Phys; 2020 Oct; 22(37):21428-21435. PubMed ID: 32944724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Many-body effects in an MXene Ti
    Ding YM; Nie X; Dong H; Rujisamphan N; Li Y
    Nanoscale Adv; 2020 Jun; 2(6):2471-2477. PubMed ID: 36133373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and optical properties of Janus ZrSSe by density functional theory.
    Vu TV; Tong HD; Tran DP; Binh NTT; Nguyen CV; Phuc HV; Do HM; Hieu NN
    RSC Adv; 2019 Dec; 9(70):41058-41065. PubMed ID: 35540071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.
    Hu T; Han Y; Dong J
    Nanotechnology; 2014 Nov; 25(45):455703. PubMed ID: 25333269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing novel monolayer and multilayer h-CSe crystals with tunable photoelectric properties.
    Dong X; Mao C; Qian L; Hu Y; Xue L; Huang H
    Phys Chem Chem Phys; 2023 Oct; 25(38):26073-26080. PubMed ID: 37740281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hittorf's violet phosphorene as a promising candidate for optoelectronic and photocatalytic applications: first-principles characterization.
    Lu YL; Dong S; Zhou W; Dai S; Zhou B; Zhao H; Wu P
    Phys Chem Chem Phys; 2018 May; 20(17):11967-11975. PubMed ID: 29670965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet.
    Hui YY; Liu X; Jie W; Chan NY; Hao J; Hsu YT; Li LJ; Guo W; Lau SP
    ACS Nano; 2013 Aug; 7(8):7126-31. PubMed ID: 23844893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability, elastic properties, and electronic structure of germanane nanoribbons.
    Dong S; Chen CQ
    J Phys Condens Matter; 2015 Jun; 27(24):245303. PubMed ID: 26030722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of stacking order and in-plane strain on the electronic properties of bilayer GeSe.
    Mao Y; Xu C; Yuan J; Zhao H
    Phys Chem Chem Phys; 2018 Mar; 20(10):6929-6935. PubMed ID: 29464239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band gap engineering of FeS2 under biaxial strain: a first principles study.
    Xiao P; Fan XL; Liu LM; Lau WM
    Phys Chem Chem Phys; 2014 Nov; 16(44):24466-72. PubMed ID: 25308322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons.
    Zhang X; Zhao X; Wu D; Jing Y; Zhou Z
    Nanoscale; 2015 Oct; 7(38):16020-5. PubMed ID: 26370829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain induced new phase and indirect-direct band gap transition of monolayer InSe.
    Hu T; Zhou J; Dong J
    Phys Chem Chem Phys; 2017 Aug; 19(32):21722-21728. PubMed ID: 28776623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.