These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25105840)

  • 1. Insights into the Cr(III) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics.
    Mushrif SH; Varghese JJ; Vlachos DG
    Phys Chem Chem Phys; 2014 Sep; 16(36):19564-72. PubMed ID: 25105840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.
    Choudhary V; Mushrif SH; Ho C; Anderko A; Nikolakis V; Marinkovic NS; Frenkel AI; Sandler SI; Vlachos DG
    J Am Chem Soc; 2013 Mar; 135(10):3997-4006. PubMed ID: 23432136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids.
    Zhang Y; Pidko EA; Hensen EJ
    Chemistry; 2011 May; 17(19):5281-8. PubMed ID: 21488106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion.
    Mushrif SH; Varghese JJ; Krishnamurthy CB
    Phys Chem Chem Phys; 2015 Feb; 17(7):4961-9. PubMed ID: 25591500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose isomerization to fructose from ab initio molecular dynamics simulations.
    Qian X; Wei X
    J Phys Chem B; 2012 Sep; 116(35):10898-904. PubMed ID: 22897167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Insight into the Conversion Mechanism of Glucose to Fructose Catalyzed by CrCl
    Jing Y; Gao J; Liu C; Zhang D
    J Phys Chem B; 2017 Mar; 121(9):2171-2178. PubMed ID: 28195725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media.
    Choudhary V; Pinar AB; Lobo RF; Vlachos DG; Sandler SI
    ChemSusChem; 2013 Dec; 6(12):2369-76. PubMed ID: 24106178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights into the dissociation and decomposition of carbonic acid in water via the hydroxide route: an ab initio metadynamics study.
    Galib M; Hanna G
    J Phys Chem B; 2011 Dec; 115(50):15024-35. PubMed ID: 22053746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and aqueous media.
    Saravanamurugan S; Paniagua M; Melero JA; Riisager A
    J Am Chem Soc; 2013 Apr; 135(14):5246-9. PubMed ID: 23506200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms and energetics for acid catalyzed β-D-glucose conversion to 5-hydroxymethylfurfurl.
    Qian X
    J Phys Chem A; 2011 Oct; 115(42):11740-8. PubMed ID: 21916465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy surface for Brønsted acid-catalyzed glucose ring-opening in aqueous solution.
    Qian X
    J Phys Chem B; 2013 Oct; 117(39):11460-5. PubMed ID: 23992399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of metal catalysts in glucose-fructose conversion.
    Loerbroks C; van Rijn J; Ruby MP; Tong Q; Schüth F; Thiel W
    Chemistry; 2014 Sep; 20(38):12298-309. PubMed ID: 25156402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy landscape for glucose condensation reactions.
    Liu D; Nimlos MR; Johnson DK; Himmel ME; Qian X
    J Phys Chem A; 2010 Dec; 114(49):12936-44. PubMed ID: 21086968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose.
    Yong G; Zhang Y; Ying JY
    Angew Chem Int Ed Engl; 2008; 47(48):9345-8. PubMed ID: 18956409
    [No Abstract]   [Full Text] [Related]  

  • 15. Glucose transformation to 5-hydroxymethylfurfural in acidic ionic liquid: A quantum mechanical study.
    Arifin ; Puripat M; Yokogawa D; Parasuk V; Irle S
    J Comput Chem; 2016 Jan; 37(3):327-35. PubMed ID: 26453901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study.
    Yang G; Pidko EA; Hensen EJ
    ChemSusChem; 2013 Sep; 6(9):1688-96. PubMed ID: 23943294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The water-catalyzed mechanism of the ring-opening reaction of glucose.
    Plazinski W; Plazinska A; Drach M
    Phys Chem Chem Phys; 2015 Sep; 17(33):21622-9. PubMed ID: 26226084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent.
    Qian X; Liu D
    Carbohydr Res; 2014 Mar; 388():50-60. PubMed ID: 24631668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of water on beta-D-xylose condensation reactions.
    Dong H; Nimlos MR; Himmel ME; Johnson DK; Qian X
    J Phys Chem A; 2009 Jul; 113(30):8577-85. PubMed ID: 19572686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods.
    Assary RS; Kim T; Low JJ; Greeley J; Curtiss LA
    Phys Chem Chem Phys; 2012 Dec; 14(48):16603-11. PubMed ID: 22932938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.