These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25105926)

  • 1. Reliable assessment of physical activity in disease: an update on activity monitors.
    Westerterp KR
    Curr Opin Clin Nutr Metab Care; 2014 Sep; 17(5):401-6. PubMed ID: 25105926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daily physical activity assessment with accelerometers: new insights and validation studies.
    Plasqui G; Bonomi AG; Westerterp KR
    Obes Rev; 2013 Jun; 14(6):451-62. PubMed ID: 23398786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical activity and human energy expenditure.
    Westerterp KR; Plasqui G
    Curr Opin Clin Nutr Metab Care; 2004 Nov; 7(6):607-13. PubMed ID: 15534427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of accelerometry-based wearable motion detectors for physical activity monitoring.
    Yang CC; Hsu YL
    Sensors (Basel); 2010; 10(8):7772-88. PubMed ID: 22163626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study.
    Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP;
    J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical activity assessment with accelerometers: an evaluation against doubly labeled water.
    Plasqui G; Westerterp KR
    Obesity (Silver Spring); 2007 Oct; 15(10):2371-9. PubMed ID: 17925461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-living energy expenditure in children using multi-sensor activity monitors.
    Arvidsson D; Slinde F; Hulthén L
    Clin Nutr; 2009 Jun; 28(3):305-12. PubMed ID: 19345453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a body-worn accelerometer to measure activity patterns in octogenarians.
    Taylor LM; Klenk J; Maney AJ; Kerse N; Macdonald BM; Maddison R
    Arch Phys Med Rehabil; 2014 May; 95(5):930-4. PubMed ID: 24486241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the development and application of the accelerometry technique for estimating energy expenditure.
    Halsey LG; Shepard EL; Wilson RP
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):305-14. PubMed ID: 20837157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of physical activity energy expenditure in Japanese adolescents assessed by EW4800P triaxial accelerometry and the doubly labelled water method.
    Ishikawa-Takata K; Kaneko K; Koizumi K; Ito C
    Br J Nutr; 2013 Oct; 110(7):1347-55. PubMed ID: 23544366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low physical activity in patients with type 2 diabetes: the role of obesity.
    Fagour C; Gonzalez C; Pezzino S; Florenty S; Rosette-Narece M; Gin H; Rigalleau V
    Diabetes Metab; 2013 Feb; 39(1):85-7. PubMed ID: 23159129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Total Energy Expenditure and Physical Activity Using Activity Monitors.
    Plasqui G
    J Nutr Sci Vitaminol (Tokyo); 2022; 68(Supplement):S49-S51. PubMed ID: 36437015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in physical activity monitoring and lifestyle interventions in obesity: a review.
    Bonomi AG; Westerterp KR
    Int J Obes (Lond); 2012 Feb; 36(2):167-77. PubMed ID: 21587199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pilot study on total energy expenditure by accelerometer and physical activity logs].
    Li Y; Liu JM; Yang XG; Li KJ
    Zhonghua Yu Fang Yi Xue Za Zhi; 2008 Mar; 42(3):192-5. PubMed ID: 18788585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men.
    Villars C; Bergouignan A; Dugas J; Antoun E; Schoeller DA; Roth H; Maingon AC; Lefai E; Blanc S; Simon C
    J Appl Physiol (1985); 2012 Dec; 113(11):1763-71. PubMed ID: 23019315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
    Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH
    Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity.
    Bouten CV; Koekkoek KT; Verduin M; Kodde R; Janssen JD
    IEEE Trans Biomed Eng; 1997 Mar; 44(3):136-47. PubMed ID: 9216127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triaxial accelerometry for assessment of physical activity in young children.
    Tanaka C; Tanaka S; Kawahara J; Midorikawa T
    Obesity (Silver Spring); 2007 May; 15(5):1233-41. PubMed ID: 17495200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.