These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25105988)

  • 1. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides.
    Zhang M; Zhao J; Zheng J
    Soft Matter; 2014 Oct; 10(38):7425-51. PubMed ID: 25105988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separate molecular determinants in amyloidogenic and antimicrobial peptides.
    Landreh M; Johansson J; Jörnvall H
    J Mol Biol; 2014 May; 426(11):2159-66. PubMed ID: 24650898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane Interacting Peptides: A Review.
    Herrera AI; Tomich JM; Prakash O
    Curr Protein Pept Sci; 2016; 17(8):827-841. PubMed ID: 27226195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides.
    Wang L; Liu Q; Chen JC; Cui YX; Zhou B; Chen YX; Zhao YF; Li YM
    Biol Chem; 2012 Jul; 393(7):641-6. PubMed ID: 22944668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Amyloid Fibril-Forming Properties of the Amphibian Antimicrobial Peptide Uperin 3.5.
    Calabrese AN; Liu Y; Wang T; Musgrave IF; Pukala TL; Tabor RF; Martin LL; Carver JA; Bowie JH
    Chembiochem; 2016 Feb; 17(3):239-46. PubMed ID: 26676975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.
    Gao B; Sherman P; Luo L; Bowie J; Zhu S
    FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides.
    Nicolas P
    FEBS J; 2009 Nov; 276(22):6483-96. PubMed ID: 19817856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes?
    Papo N; Shai Y
    Peptides; 2003 Nov; 24(11):1693-703. PubMed ID: 15019200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between peptide structure and antibacterial activity.
    Powers JP; Hancock RE
    Peptides; 2003 Nov; 24(11):1681-91. PubMed ID: 15019199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy.
    Bechinger B; Salnikov ES
    Chem Phys Lipids; 2012 Apr; 165(3):282-301. PubMed ID: 22366307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating charge-dependent and folding-mediated antimicrobial interactions at peptide-lipid interfaces.
    Iavicoli P; Rossi F; Lamarre B; Bella A; Ryadnov MG; Calzolai L
    Eur Biophys J; 2017 May; 46(4):375-382. PubMed ID: 27832293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance spectroscopy for studying the membrane binding of antimicrobial peptides.
    Hall K; Aguilar MI
    Methods Mol Biol; 2010; 627():213-23. PubMed ID: 20217624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems.
    Butterfield SM; Lashuel HA
    Angew Chem Int Ed Engl; 2010 Aug; 49(33):5628-54. PubMed ID: 20623810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common landscape for membrane-active peptides.
    Last NB; Schlamadinger DE; Miranker AD
    Protein Sci; 2013 Jul; 22(7):870-82. PubMed ID: 23649542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes.
    Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F
    Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of lipids in the interaction of antimicrobial peptides with membranes.
    Teixeira V; Feio MJ; Bastos M
    Prog Lipid Res; 2012 Apr; 51(2):149-77. PubMed ID: 22245454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function.
    Rydberg HA; Carlsson N; Nordén B
    Biochem Biophys Res Commun; 2012 Oct; 427(2):261-5. PubMed ID: 22989747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.
    Wu M; Maier E; Benz R; Hancock RE
    Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.