These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25105988)

  • 21. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.
    Wu M; Maier E; Benz R; Hancock RE
    Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane interactions of antimicrobial beta-peptides: the role of amphipathicity versus secondary structure induction.
    Hall K; Aguilar MI
    Biopolymers; 2009; 92(6):554-64. PubMed ID: 19780127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study.
    Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH
    Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane interactions of designed cationic antimicrobial peptides: the two thresholds.
    Glukhov E; Burrows LL; Deber CM
    Biopolymers; 2008 May; 89(5):360-71. PubMed ID: 18186149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K.
    Bobone S; Piazzon A; Orioni B; Pedersen JZ; Nan YH; Hahm KS; Shin SY; Stella L
    J Pept Sci; 2011 May; 17(5):335-41. PubMed ID: 21294230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of Piscidin-1 with zwitterionic versus anionic membranes: a comparative molecular dynamics study.
    Rahmanpour A; Ghahremanpour MM; Mehrnejad F; Moghaddam ME
    J Biomol Struct Dyn; 2013 Dec; 31(12):1393-403. PubMed ID: 23140320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane interaction of chrysophsin-1, a histidine-rich antimicrobial peptide from red sea bream.
    Mason AJ; Bertani P; Moulay G; Marquette A; Perrone B; Drake AF; Kichler A; Bechinger B
    Biochemistry; 2007 Dec; 46(51):15175-87. PubMed ID: 18052076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR.
    Su Y; Li S; Hong M
    Amino Acids; 2013 Mar; 44(3):821-33. PubMed ID: 23108593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism.
    Fernandez DI; Le Brun AP; Whitwell TC; Sani MA; James M; Separovic F
    Phys Chem Chem Phys; 2012 Dec; 14(45):15739-51. PubMed ID: 23093307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The expanding scope of antimicrobial peptide structures and their modes of action.
    Nguyen LT; Haney EF; Vogel HJ
    Trends Biotechnol; 2011 Sep; 29(9):464-72. PubMed ID: 21680034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells.
    Papo N; Shai Y
    Biochemistry; 2003 Aug; 42(31):9346-54. PubMed ID: 12899621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria.
    Hale JD; Hancock RE
    Expert Rev Anti Infect Ther; 2007 Dec; 5(6):951-9. PubMed ID: 18039080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of helical kink in antimicrobial peptides on membrane pore formation.
    Tuerkova A; Kabelka I; Králová T; Sukeník L; Pokorná Š; Hof M; Vácha R
    Elife; 2020 Mar; 9():. PubMed ID: 32167466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorine--a new element in the design of membrane-active peptides.
    Marsh EN; Buer BC; Ramamoorthy A
    Mol Biosyst; 2009 Oct; 5(10):1143-7. PubMed ID: 19756303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental factors differently affect human and rat IAPP: conformational preferences and membrane interactions of IAPP17-29 peptide derivatives.
    Pappalardo G; Milardi D; Magrì A; Attanasio F; Impellizzeri G; La Rosa C; Grasso D; Rizzarelli E
    Chemistry; 2007; 13(36):10204-15. PubMed ID: 17902185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial Peptides Share a Common Interaction Driven by Membrane Line Tension Reduction.
    Henderson JM; Waring AJ; Separovic F; Lee KYC
    Biophys J; 2016 Nov; 111(10):2176-2189. PubMed ID: 27851941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence analysis and membrane partitioning energies of alpha-helical antimicrobial peptides.
    Han X; Kang W
    Bioinformatics; 2004 Apr; 20(6):970-3. PubMed ID: 14764568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships.
    Dennison SR; Wallace J; Harris F; Phoenix DA
    Protein Pept Lett; 2005 Jan; 12(1):31-9. PubMed ID: 15638801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.