These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25106486)

  • 1. Ultrafast cone-beam computed tomography imaging and postprocessing data during image-guided therapeutic practice.
    Paul J; Mbalisike EC; Vogl TJ
    Eur Radiol; 2014 Nov; 24(11):2866-75. PubMed ID: 25106486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast cone-beam computed tomography: a comparative study of imaging protocols during image-guided therapy procedure.
    Paul J; Chacko A; Farhang M; Kamali S; Tavanania M; Vogl T; Panahi B
    Biomed Res Int; 2015; 2015():467850. PubMed ID: 25874213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image quality of arterial phase and parenchymal blood volume (PBV) maps derived from C-arm computed tomography in the evaluation of transarterial chemoembolization.
    Zitzelsberger T; Syha R; Grözinger G; Partovi S; Nikolaou K; Grosse U
    Cancer Imaging; 2018 May; 18(1):16. PubMed ID: 29720249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography.
    Paul J; Vogl TJ; Chacko A
    Phys Med Biol; 2015 Oct; 60(20):8109-27. PubMed ID: 26425872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can cone-beam CT tumor blood volume predicts the response to chemoembolization of colorectal liver metastases? Results of an observational study.
    Pellerin O; Pereira H; Moussa N; Del Giudice C; Pernot S; Dean C; Chatellier G; Sapoval M
    Eur Radiol; 2019 Sep; 29(9):5022-5031. PubMed ID: 30788587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-phase Cone-beam CT-based Navigation Imaging Significantly Enhances Tumor Detectability and Aids Superselective Transarterial Chemoembolization of Liver Cancer.
    Yao X; Yan D; Jiang X; Li X; Zeng H; Liu D; Li H
    Acad Radiol; 2018 Aug; 25(8):1031-1037. PubMed ID: 29398432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-arm computed tomography parenchymal blood volume measurement in evaluation of hepatocellular carcinoma before transarterial chemoembolization with drug eluting beads.
    Syha R; Grözinger G; Grosse U; Maurer M; Zender L; Horger M; Nikolaou K; Ketelsen D
    Cancer Imaging; 2015 Dec; 15():22. PubMed ID: 26715200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation exposure during TACE procedures using additional cone-beam CT (CBCT) for guidance: safety and precautions.
    Jonczyk M; Collettini F; Geisel D; Schnapauff D; Böning G; Wieners G; Gebauer G
    Acta Radiol; 2018 Nov; 59(11):1277-1284. PubMed ID: 29490465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visibility of Hypovascularized Liver Tumors during Intra-Arterial Therapy Using Split-Bolus Single-Phase Cone Beam CT.
    Jonczyk M; Collettini F; Schnapauff D; Geisel D; Böning G; Lüdemann WM; Wieners G; Hamm B; Gebauer B
    Cardiovasc Intervent Radiol; 2019 Feb; 42(2):260-267. PubMed ID: 30374613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Efficacy of Cone-Beam CT-Based Liver Perfusion Mapping to Predict Initial Response of Hepatocellular Carcinoma to Transarterial Chemoembolization.
    Kim KA; Choi SY; Kim MU; Baek SY; Park SH; Yoo K; Kim TH; Kim HY
    J Vasc Interv Radiol; 2019 Mar; 30(3):358-369. PubMed ID: 30819478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraprocedural cone-beam CT with parenchymal blood volume assessment for transarterial chemoembolization guidance: Impact on the effectiveness of the individual TACE sessions compared to DSA guidance alone.
    Peisen F; Maurer M; Grosse U; Nikolaou K; Syha R; Artzner C; Bitzer M; Horger M; Grözinger G
    Eur J Radiol; 2021 Jul; 140():109768. PubMed ID: 33991970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraprocedural blood volume measurement using C-arm CT as a predictor for treatment response of malignant liver tumours undergoing repetitive transarterial chemoembolization (TACE).
    Vogl TJ; Schaefer P; Lehnert T; Nour-Eldin NE; Ackermann H; Mbalisike E; Hammerstingl R; Eichler K; Zangos S; Naguib NN
    Eur Radiol; 2016 Mar; 26(3):755-63. PubMed ID: 26123407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transarterial Chemoembolization of Hepatocellular Carcinoma Using Radiopaque Drug-Eluting Embolics: How to Pursue Periprocedural Cross-Sectional Imaging?
    Ruff C; Grözinger G; Syha R; Elser S; Partovi S; Bitzer M; Horger M; Nikolaou K; Grosse U
    J Vasc Interv Radiol; 2019 Mar; 30(3):380-389.e4. PubMed ID: 30819480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of diagnostic cone-beam computed tomography protocols on image quality, patient dose, and lesion detection.
    Paul J; Chacko A; Saccomandi P; Vogl TJ; Nour-Eldin NA
    Phys Med; 2016 Dec; 32(12):1575-1583. PubMed ID: 27894729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usefulness of fusion images of unenhanced and contrast-enhanced arterial phase cone-beam CT in the detection of viable hepatocellular carcinoma during transarterial chemoembolization.
    Kim EH; Oh JS; Chun HJ; Choi BG; Lee HG
    Diagn Interv Radiol; 2018 Sep; 24(5):262-267. PubMed ID: 30211679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraprocedural 3D Quantification of Lipiodol Deposition on Cone-Beam CT Predicts Tumor Response After Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma.
    Wang Z; Chen R; Duran R; Zhao Y; Yenokyan G; Chapiro J; Schernthaner R; Radaelli A; Lin M; Geschwind JF
    Cardiovasc Intervent Radiol; 2015 Dec; 38(6):1548-56. PubMed ID: 26001366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Value of Latest-generation Cone-beam Computed Tomography for Post Lipiodol-embolization Imaging in Hepatic Transarterial Chemoembolization in Comparison with Multi-detector Computed Tomography.
    Alizadeh LS; Koch V; Vogl TJ; Yel I; Gruenewald L; Albrecht MH; Herrmann E; von Knebel-Doeberitz PL; Booz C
    Acad Radiol; 2022 Jul; 29(7):e109-e118. PubMed ID: 34598867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Visibility of Metastatic Disease in the Liver During Intra-Arterial Therapy Using Delayed Arterial Phase Cone-Beam CT.
    Schernthaner RE; Haroun RR; Duran R; Lee H; Sahu S; Sohn JH; Chapiro J; Zhao Y; Gorodetski B; Fleckenstein F; Smolka S; Radaelli A; van der Bom IM; Lin M; Geschwind JF
    Cardiovasc Intervent Radiol; 2016 Oct; 39(10):1429-37. PubMed ID: 27380872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical impact of a new cone beam CT angiography respiratory motion artifact reduction algorithm during hepatic intra-arterial interventions.
    Dioguardi Burgio M; Benseghir T; Roche V; Garcia Alba C; Debry JB; Sibert A; Vilgrain V; Ronot M
    Eur Radiol; 2020 Jan; 30(1):163-174. PubMed ID: 31359127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of automated cone-beam CT vessel identification software during transarterial hepatic embolisation: radiation dose, contrast medium volume, processing time, and operator perspectives compared to digital subtraction angiography.
    Durack JC; Brown KT; Avignon G; Brody LA; Sofocleous CT; Erinjeri JP; Solomon SB
    Clin Radiol; 2018 Dec; 73(12):1057.e1-1057.e6. PubMed ID: 30220595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.