These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25107495)

  • 1. GVCBLUP: a computer package for genomic prediction and variance component estimation of additive and dominance effects.
    Wang C; Prakapenka D; Wang S; Pulugurta S; Runesha HB; Da Y
    BMC Bioinformatics; 2014 Aug; 15(1):270. PubMed ID: 25107495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.
    Da Y; Wang C; Wang S; Hu G
    PLoS One; 2014; 9(1):e87666. PubMed ID: 24498162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GVCHAP: A Computing Pipeline for Genomic Prediction and Variance Component Estimation Using Haplotypes and SNP Markers.
    Prakapenka D; Wang C; Liang Z; Bian C; Tan C; Da Y
    Front Genet; 2020; 11():282. PubMed ID: 32318093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Model with Correlation Between Additive and Dominance Effects.
    Xiang T; Christensen OF; Vitezica ZG; Legarra A
    Genetics; 2018 Jul; 209(3):711-723. PubMed ID: 29743175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is single-step genomic REML with the algorithm for proven and young more computationally efficient when less generations of data are present?
    Junqueira VS; Lourenco D; Masuda Y; Cardoso FF; Lopes PS; Silva FFE; Misztal I
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35289906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic prediction and genome-wide association studies for additive and dominance effects for body composition traits using 50 K and imputed high-density SNP genotypes in Yunong-black pigs.
    Wu Z; Dou T; Bai L; Han J; Yang F; Wang K; Han X; Qiao R; Li XL; Li XJ
    J Anim Breed Genet; 2024 Mar; 141(2):124-137. PubMed ID: 37822282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies.
    Ma L; Runesha HB; Dvorkin D; Garbe JR; Da Y
    BMC Bioinformatics; 2008 Jul; 9():315. PubMed ID: 18644146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.
    Da Y
    BMC Genet; 2015 Dec; 16():144. PubMed ID: 26678438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers.
    Su G; Christensen OF; Ostersen T; Henryon M; Lund MS
    PLoS One; 2012; 7(9):e45293. PubMed ID: 23028912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers.
    Heidaritabar M; Wolc A; Arango J; Zeng J; Settar P; Fulton JE; O'Sullivan NP; Bastiaansen JW; Fernando RL; Garrick DJ; Dekkers JC
    J Anim Breed Genet; 2016 Oct; 133(5):334-46. PubMed ID: 27357473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle.
    Ertl J; Legarra A; Vitezica ZG; Varona L; Edel C; Emmerling R; Götz KU
    Genet Sel Evol; 2014 Jun; 46(1):40. PubMed ID: 24962065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.
    Covarrubias-Pazaran G
    PLoS One; 2016; 11(6):e0156744. PubMed ID: 27271781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the additive and dominant variance and covariance of individuals within the genomic selection scope.
    Vitezica ZG; Varona L; Legarra A
    Genetics; 2013 Dec; 195(4):1223-30. PubMed ID: 24121775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative genetics model as the unifying model for defining genomic relationship and inbreeding coefficient.
    Wang C; Da Y
    PLoS One; 2014; 9(12):e114484. PubMed ID: 25517971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers.
    Shepherd RK; Meuwissen TH; Woolliams JA
    BMC Bioinformatics; 2010 Oct; 11():529. PubMed ID: 20969788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic estimation of additive and dominance effects and impact of accounting for dominance on accuracy of genomic evaluation in sheep populations.
    Moghaddar N; van der Werf JHJ
    J Anim Breed Genet; 2017 Dec; 134(6):453-462. PubMed ID: 28833716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of inclusion non-additive effects on genome-wide association and variance's components in Scottish black sheep.
    Alipanah M; Roudbari Z; Momen M; Esmailizadeh A
    Anim Biotechnol; 2023 Dec; 34(8):3765-3773. PubMed ID: 37343283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DAIRRy-BLUP: a high-performance computing approach to genomic prediction.
    De Coninck A; Fostier J; Maenhout S; De Baets B
    Genetics; 2014 Jul; 197(3):813-22. PubMed ID: 24736932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating dominance genetic variances for growth traits in American Angus males using genomic models.
    Garcia-Baccino CA; Lourenco DAL; Miller S; Cantet RJC; Vitezica ZG
    J Anim Sci; 2020 Jan; 98(1):. PubMed ID: 31867623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.