BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25107641)

  • 21. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer.
    Mekala JR; Naushad SM; Ponnusamy L; Arivazhagan G; Sakthiprasad V; Pal-Bhadra M
    Gene; 2018 Jan; 641():248-258. PubMed ID: 29038000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MicroRNAs in breast cancer pathogenesis.
    Götte M
    Minerva Ginecol; 2010 Dec; 62(6):559-71. PubMed ID: 21079577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA expression and its implications for the diagnosis and therapeutic strategies of breast cancer.
    Shi M; Guo N
    Cancer Treat Rev; 2009 Jun; 35(4):328-34. PubMed ID: 19171434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New targets for triple-negative breast cancer.
    Herold CI; Anders CK
    Oncology (Williston Park); 2013 Sep; 27(9):846-54. PubMed ID: 24282978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triple-negative breast carcinoma: current and emerging concepts.
    Schmadeka R; Harmon BE; Singh M
    Am J Clin Pathol; 2014 Apr; 141(4):462-77. PubMed ID: 24619745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA copy number alterations and expression of relevant genes in triple-negative breast cancer.
    Han W; Jung EM; Cho J; Lee JW; Hwang KT; Yang SJ; Kang JJ; Bae JY; Jeon YK; Park IA; Nicolau M; Jeffrey SS; Noh DY
    Genes Chromosomes Cancer; 2008 Jun; 47(6):490-9. PubMed ID: 18314908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What is triple-negative breast cancer?
    Irvin WJ; Carey LA
    Eur J Cancer; 2008 Dec; 44(18):2799-805. PubMed ID: 19008097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated analysis of the potential roles of miRNA‑mRNA networks in triple negative breast cancer.
    Zhu H; Dai M; Chen X; Chen X; Qin S; Dai S
    Mol Med Rep; 2017 Aug; 16(2):1139-1146. PubMed ID: 28627677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term soy consumption and tumor tissue MicroRNA and gene expression in triple-negative breast cancer.
    Guo X; Cai Q; Bao P; Wu J; Wen W; Ye F; Zheng W; Zheng Y; Shu XO
    Cancer; 2016 Aug; 122(16):2544-51. PubMed ID: 27183356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and targeting of microRNAs modulating acquired chemotherapy resistance in Triple negative breast cancer (TNBC): A better strategy to combat chemoresistance.
    Das S
    Med Hypotheses; 2016 Nov; 96():5-8. PubMed ID: 27959276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth?
    Chiorean R; Braicu C; Berindan-Neagoe I
    Breast; 2013 Dec; 22(6):1026-33. PubMed ID: 24063766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased expression of osteopontin in patients with triple-negative breast cancer.
    Wang X; Chao L; Ma G; Chen L; Tian B; Zang Y; Sun J
    Eur J Clin Invest; 2008 Jun; 38(6):438-46. PubMed ID: 18452545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triple negative breast cancer: a multi-omics network discovery strategy for candidate targets and driving pathways.
    Karagoz K; Sinha R; Arga KY
    OMICS; 2015 Feb; 19(2):115-30. PubMed ID: 25611337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment (Review).
    Piva R; Spandidos DA; Gambari R
    Int J Oncol; 2013 Oct; 43(4):985-94. PubMed ID: 23939688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinformatics Prediction and In Vitro Analysis Revealed That miR-17 Targets Cyclin D1 mRNA in Triple Negative Breast Cancer Cells.
    Karami F; Mohammadi-Yeganeh S; Abedi N; Koochaki A; Kia V; Paryan M
    Chem Biol Drug Des; 2016 Mar; 87(3):317-20. PubMed ID: 26431674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucocorticoid receptor overexpression slightly shifts microRNA expression patterns in triple-negative breast cancer.
    Buschmann D; González R; Kirchner B; Mazzone C; Pfaffl MW; Schelling G; Steinlein O; Reithmair M
    Int J Oncol; 2018 Jun; 52(6):1765-1776. PubMed ID: 29620157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of androgen and microRNA in triple-negative breast cancer.
    Al-Othman N; Ahram M; Alqaraleh M
    Breast Dis; 2020; 39(1):15-27. PubMed ID: 31839601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternative Polyadenylation in Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO Posttranscriptional Regulation.
    Miles WO; Lembo A; Volorio A; Brachtel E; Tian B; Sgroi D; Provero P; Dyson N
    Cancer Res; 2016 Dec; 76(24):7231-7241. PubMed ID: 27758885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Triple-Negative Breast Cancer Database: an omics platform for reference, integration and analysis of triple-negative breast cancer data.
    Raju R; Paul AM; Asokachandran V; George B; Radhamony L; Vinaykumar M; Girijadevi R; Pillai MR
    Breast Cancer Res; 2014 Dec; 16(6):490. PubMed ID: 25472854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications.
    Gámez-Pozo A; Berges-Soria J; Arevalillo JM; Nanni P; López-Vacas R; Navarro H; Grossmann J; Castaneda CA; Main P; Díaz-Almirón M; Espinosa E; Ciruelos E; Fresno Vara JÁ
    Cancer Res; 2015 Jun; 75(11):2243-53. PubMed ID: 25883093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.