BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1096 related articles for article (PubMed ID: 25108071)

  • 1. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mn(II) on reactions catalyzed by lignin peroxidase from Phanerochaete chrysosporium.
    Bono JJ; Goulas P; Boe JF; Portet N; Seris JL
    Eur J Biochem; 1990 Aug; 192(1):189-93. PubMed ID: 2401291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The white rot basidiomycete
    Kapich AN; Suzuki H; Hirth KC; Fernández-Fueyo E; Martínez AT; Houtman CJ; Hammel KE
    Appl Environ Microbiol; 2024 Apr; 90(4):e0204423. PubMed ID: 38483171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese, Mn-dependent peroxidases, and the biodegradation of lignin.
    Forrester IT; Grabski AC; Burgess RR; Leatham GF
    Biochem Biophys Res Commun; 1988 Dec; 157(3):992-9. PubMed ID: 3207431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase.
    Bao W; Fukushima Y; Jensen KA; Moen MA; Hammel KE
    FEBS Lett; 1994 Nov; 354(3):297-300. PubMed ID: 7957943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction.
    Heinfling A; Martínez MJ; Martínez AT; Bergbauer M; Szewzyk U
    Appl Environ Microbiol; 1998 Aug; 64(8):2788-93. PubMed ID: 9687431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Participation of Mn(II) in the catalysis of laccase, manganese peroxidase and lignin peroxidase from Phelbia radiata.
    Lundell T; Hatakka A
    FEBS Lett; 1994 Jul; 348(3):291-6. PubMed ID: 8034057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi.
    Gill K; Arora S
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):28-33. PubMed ID: 12545383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases.
    Ruiz-Dueñas FJ; Morales M; García E; Miki Y; Martínez MJ; Martínez AT
    J Exp Bot; 2009; 60(2):441-52. PubMed ID: 18987391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese.
    Mester T; Field JA
    J Biol Chem; 1998 Jun; 273(25):15412-7. PubMed ID: 9624124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic mechanisms and regulation of lignin peroxidase.
    Harvey PJ; Floris R; Lundell T; Palmer JM; Schoemaker HE; Wever R
    Biochem Soc Trans; 1992 May; 20(2):345-9. PubMed ID: 1397627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation?
    Hildén L; Johansson G; Pettersson G; Li J; Ljungquist P; Henriksson G
    FEBS Lett; 2000 Jul; 477(1-2):79-83. PubMed ID: 10899314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound.
    Tuor U; Wariishi H; Schoemaker HE; Gold MH
    Biochemistry; 1992 Jun; 31(21):4986-95. PubMed ID: 1599925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and 14C-labeled lignins.
    Kapich A; Hofrichter M; Vares T; Hatakka A
    Biochem Biophys Res Commun; 1999 May; 259(1):212-9. PubMed ID: 10334942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes.
    Ruiz-Dueñas FJ; Lundell T; Floudas D; Nagy LG; Barrasa JM; Hibbett DS; Martínez AT
    Mycologia; 2013; 105(6):1428-44. PubMed ID: 23921235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of guaiacol by lignin peroxidase. Role of veratryl alcohol.
    Koduri RS; Tien M
    J Biol Chem; 1995 Sep; 270(38):22254-8. PubMed ID: 7673205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of lipid peroxidation in the degradation of a non-phenolic lignin model compound by manganese peroxidase of the litter-decomposing fungus Stropharia coronilla.
    Kapich AN; Steffen KT; Hofrichter M; Hatakka A
    Biochem Biophys Res Commun; 2005 May; 330(2):371-7. PubMed ID: 15796893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.
    Kamitsuji H; Watanabe T; Honda Y; Kuwahara M
    Biochem J; 2005 Mar; 386(Pt 2):387-93. PubMed ID: 15461584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.
    Bourbonnais R; Paice MG
    FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.