BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25108082)

  • 1. Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length.
    Wang W; Elbanna A
    Bone; 2014 Nov; 68():20-31. PubMed ID: 25108082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture.
    Fantner GE; Hassenkam T; Kindt JH; Weaver JC; Birkedal H; Pechenik L; Cutroni JA; Cidade GA; Stucky GD; Morse DE; Hansma PK
    Nat Mater; 2005 Aug; 4(8):612-6. PubMed ID: 16025123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sacrificial bonds and hidden length in biomaterials: a kinetic constitutive description of strength and toughness in bone.
    Lieou CK; Elbanna AE; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012703. PubMed ID: 23944488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of polymer molecules with sacrificial bond and hidden length systems: towards a physically-based mesoscopic constitutive law.
    Elbanna AE; Carlson JM
    PLoS One; 2013; 8(4):e56118. PubMed ID: 23565135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking.
    Siegmund T; Allen MR; Burr DB
    J Biomech; 2008; 41(7):1427-35. PubMed ID: 18406410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emergence of an unusual stiffness profile in hierarchical biological tissues.
    Bar-On B; Wagner HD
    Acta Biomater; 2013 Sep; 9(9):8099-109. PubMed ID: 23669625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and intermolecular effects in collagen fibril mechanics: a multiscale analytical model compared with atomistic and experimental studies.
    Marino M
    Biomech Model Mechanobiol; 2016 Feb; 15(1):133-54. PubMed ID: 26220454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new model to simulate the elastic properties of mineralized collagen fibril.
    Yuan F; Stock SR; Haeffner DR; Almer JD; Dunand DC; Brinson LC
    Biomech Model Mechanobiol; 2011 Apr; 10(2):147-60. PubMed ID: 20521160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone toughening through stress-induced non-collagenous protein denaturation.
    Wang Z; Vashishth D; Picu RC
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1093-1106. PubMed ID: 29658056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods.
    Reisinger AG; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2010 Oct; 9(5):499-510. PubMed ID: 20135190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.