These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25108245)

  • 21. Electrophysiological correlates of preparation and implementation for different types of task shifts.
    Hsieh S; Wu M
    Brain Res; 2011 Nov; 1423():41-52. PubMed ID: 22000079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. External attentional focus enhances movement automatization: a comprehensive test of the constrained action hypothesis.
    Kal EC; van der Kamp J; Houdijk H
    Hum Mov Sci; 2013 Aug; 32(4):527-39. PubMed ID: 24054892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Context and hand posture modulate the neural dynamics of tool-object perception.
    Natraj N; Poole V; Mizelle JC; Flumini A; Borghi AM; Wheaton LA
    Neuropsychologia; 2013 Feb; 51(3):506-19. PubMed ID: 23261936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor processing after movement execution as revealed by evoked and induced activity.
    Bender S; Oelkers-Ax R; Resch F; Weisbrod M
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):49-58. PubMed ID: 15325412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rate control and quality assurance during rhythmic force tracking.
    Huang CY; Su JH; Hwang IS
    Behav Brain Res; 2014 Feb; 259():186-95. PubMed ID: 24269498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural correlates of stimulus and response interference in a 2-1 mapping stroop task.
    Chen A; Bailey K; Tiernan BN; West R
    Int J Psychophysiol; 2011 May; 80(2):129-38. PubMed ID: 21356252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations.
    Quant S; Adkin AL; Staines WR; Maki BE; McIlroy WE
    BMC Neurosci; 2004 May; 5():18. PubMed ID: 15147586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of attentional focus and cognitive tasks on postural sway may be the result of automaticity.
    Richer N; Saunders D; Polskaia N; Lajoie Y
    Gait Posture; 2017 May; 54():45-49. PubMed ID: 28259038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation of kinematic synergy and postural control to mechanical ankle constraint on an unsteady stance surface.
    Tsai YY; Chang GC; Hwang IS
    Hum Mov Sci; 2018 Aug; 60():10-17. PubMed ID: 29753125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in event-related potentials associated with postural adaptation during floor oscillation.
    Fujiwara K; Maeda K; Irei M; Mammadova A; Kiyota N
    Neuroscience; 2012 Jun; 213():122-32. PubMed ID: 22516016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer of postural adaptation depends on context of prior exposure.
    Pienciak-Siewert A; Barletta AJ; Ahmed AA
    J Neurophysiol; 2014 Apr; 111(7):1466-78. PubMed ID: 24371293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ERP correlates of linear hand movements: distance dependent changes.
    Kirsch W; Hennighausen E
    Clin Neurophysiol; 2010 Aug; 121(8):1285-92. PubMed ID: 20227915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attention and the readiness for action.
    Baker KS; Mattingley JB; Chambers CD; Cunnington R
    Neuropsychologia; 2011 Oct; 49(12):3303-13. PubMed ID: 21856320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cortical reorganization to improve dynamic balance control with error amplification feedback.
    Chen YC; Tsai YY; Chang GC; Hwang IS
    J Neuroeng Rehabil; 2022 Jan; 19(1):3. PubMed ID: 35034661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulus-to-matching-stimulus interval influences N1, P2, and P3b in an equiprobable Go/NoGo task.
    Steiner GZ; Barry RJ; Gonsalvez CJ
    Int J Psychophysiol; 2014 Oct; 94(1):59-68. PubMed ID: 25034341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical activity modulations underlying age-related performance differences during posture-cognition dual tasking.
    Ozdemir RA; Contreras-Vidal JL; Lee BC; Paloski WH
    Exp Brain Res; 2016 Nov; 234(11):3321-3334. PubMed ID: 27443853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatigue in a simple repetitive motor task: a combined electrophysiological and neuropsychological study.
    Dirnberger G; Duregger C; Trettler E; Lindinger G; Lang W
    Brain Res; 2004 Nov; 1028(1):26-30. PubMed ID: 15518638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Premovement facilitation of corticospinal excitability before simple and sequential movement.
    Hiraoka K; Kamata N; Matsugi A; Iwata A
    Percept Mot Skills; 2010 Aug; 111(1):129-40. PubMed ID: 21058594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.