BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 25108271)

  • 1. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.
    Caparrós C; Guillem-Martí J; Molmeneu M; Punset M; Calero JA; Gil FJ
    J Mech Behav Biomed Mater; 2014 Nov; 39():79-86. PubMed ID: 25108271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?
    Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE
    Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.
    Li F; Li J; Kou H; Huang T; Zhou L
    J Mater Sci Mater Med; 2015 Sep; 26(9):233. PubMed ID: 26384823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancellous bone from porous Ti6Al4V by multiple coating technique.
    Li JP; Li SH; Van Blitterswijk CA; de Groot K
    J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds.
    St-Pierre JP; Gauthier M; Lefebvre LP; Tabrizian M
    Biomaterials; 2005 Dec; 26(35):7319-28. PubMed ID: 16000220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive macroporous titanium implants highly interconnected.
    Caparrós C; Ortiz-Hernandez M; Molmeneu M; Punset M; Calero JA; Aparicio C; Fernández-Fairén M; Perez R; Gil FJ
    J Mater Sci Mater Med; 2016 Oct; 27(10):151. PubMed ID: 27582071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes.
    Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K
    J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium.
    Marin E; Fusi S; Pressacco M; Paussa L; Fedrizzi L
    J Mech Behav Biomed Mater; 2010 Jul; 3(5):373-81. PubMed ID: 20416551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel porous Ti6Al4V: characterization and cell attachment.
    Li JP; Li SH; Van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2005 May; 73(2):223-33. PubMed ID: 15761810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.
    Nune KC; Kumar A; Misra RDK; Li SJ; Hao YL; Yang R
    Colloids Surf B Biointerfaces; 2017 Feb; 150():78-88. PubMed ID: 27888725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications.
    Guo M; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1177-81. PubMed ID: 26478418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds.
    Goldstein AS; Zhu G; Morris GE; Meszlenyi RK; Mikos AG
    Tissue Eng; 1999 Oct; 5(5):421-34. PubMed ID: 10586098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications.
    Aslan N; Aksakal B; Findik F
    J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue behavior of TiNi foams processed by the magnesium space holder technique.
    Nakaş GI; Dericioglu AF; Bor S
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2017-23. PubMed ID: 22098901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro biocompatibility of an ultrafine grained zirconium.
    Saldaña L; Méndez-Vilas A; Jiang L; Multigner M; González-Carrasco JL; Pérez-Prado MT; González-Martín ML; Munuera L; Vilaboa N
    Biomaterials; 2007 Oct; 28(30):4343-54. PubMed ID: 17624424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young's modulus.
    Guo Y; Chen D; Cheng M; Lu W; Wang L; Zhang X
    Int J Mol Med; 2013 Mar; 31(3):689-97. PubMed ID: 23338484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.