These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25108613)

  • 1. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.
    Lu Y; Tu Z; Archer LA
    Nat Mater; 2014 Oct; 13(10):961-9. PubMed ID: 25108613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries.
    Lu Y; Korf K; Kambe Y; Tu Z; Archer LA
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):488-92. PubMed ID: 24282090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.
    Choudhury S; Mangal R; Agrawal A; Archer LA
    Nat Commun; 2015 Dec; 6():10101. PubMed ID: 26634644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions.
    Tikekar MD; Archer LA; Koch DL
    Sci Adv; 2016 Jul; 2(7):e1600320. PubMed ID: 27453943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries.
    Kalaga K; Rodrigues MT; Gullapalli H; Babu G; Arava LM; Ajayan PM
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25777-83. PubMed ID: 26535786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-electrode Coin Cell Preparation and Electrodeposition Analytics for Lithium-ion Batteries.
    Minter RD; Juarez-Robles D; Fear C; Barsukov Y; Mukherjee PP
    J Vis Exp; 2018 May; (135):. PubMed ID: 29889204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes.
    Wen K; Wang Y; Chen S; Wang X; Zhang S; Archer LA
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20412-20421. PubMed ID: 29856597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonporous Gel Electrolytes Enable Long Cycling at High Current Density for Lithium-Metal Anodes.
    Yan W; Gao X; Jin X; Liang S; Xiong X; Liu Z; Wang Z; Chen Y; Fu L; Zhang Y; Zhu Y; Wu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14258-14266. PubMed ID: 33749245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth.
    Jin S; Zhang D; Sharma A; Zhao Q; Shao Y; Chen P; Zheng J; Yin J; Deng Y; Biswal P; Archer LA
    Small; 2021 Aug; 17(33):e2101798. PubMed ID: 34228391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes.
    Wu J; Liu S; Han F; Yao X; Wang C
    Adv Mater; 2021 Feb; 33(6):e2000751. PubMed ID: 32812301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes.
    Wei S; Cheng Z; Nath P; Tikekar MD; Li G; Archer LA
    Sci Adv; 2018 Mar; 4(3):eaao6243. PubMed ID: 29582017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium-Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid-State Batteries.
    Riegger LM; Schlem R; Sann J; Zeier WG; Janek J
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6718-6723. PubMed ID: 33314609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
    Luo JY; Cui WJ; He P; Xia YY
    Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.
    Yoo E; Zhou H
    ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes.
    Biswal P; Kludze A; Rodrigues J; Deng Y; Moon T; Stalin S; Zhao Q; Yin J; Kourkoutis LF; Archer LA
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries.
    Ahmad Z; Hong Z; Viswanathan V
    Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26672-26680. PubMed ID: 33037154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries.
    Yan M; Qu W; Su Q; Chen S; Xing Y; Huang Y; Chen N; Li Y; Li L; Wu F; Chen R
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13950-13958. PubMed ID: 32125148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.
    Hayashi A; Noi K; Sakuda A; Tatsumisago M
    Nat Commun; 2012 May; 3():856. PubMed ID: 22617296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.