BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 25108835)

  • 1. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis.
    Taggart DJ; Dayeh DM; Fredrickson SW; Suo Z
    DNA Repair (Amst); 2014 Oct; 22():41-52. PubMed ID: 25108835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA polymerase λ Loop1 variant yields unexpected gain-of-function capabilities in nonhomologous end-joining.
    Kaminski AM; Chiruvella KK; Ramsden DA; Bebenek K; Kunkel TA; Pedersen LC
    DNA Repair (Amst); 2024 Apr; 136():103645. PubMed ID: 38428373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative DNA-protein crosslinks formed in mammalian cells by abasic site lyases involved in DNA repair.
    Quiñones JL; Thapar U; Wilson SH; Ramsden DA; Demple B
    DNA Repair (Amst); 2020 Mar; 87():102773. PubMed ID: 31945542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases.
    Balint E; Unk I
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of non-nucleoside triphosphate analogues opposite to an abasic site by human DNA polymerases beta and lambda.
    Crespan E; Zanoli S; Khandazhinskaya A; Shevelev I; Jasko M; Alexandrova L; Kukhanova M; Blanca G; Villani G; Hübscher U; Spadari S; Maga G
    Nucleic Acids Res; 2005; 33(13):4117-27. PubMed ID: 16043633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Switching Between Archaeal DNA Polymerases Facilitates Abasic Site Bypass.
    Feng X; Zhang B; Xu R; Gao Z; Liu X; Yuan G; Ishino S; Feng M; Shen Y; Ishino Y; She Q
    Front Microbiol; 2021; 12():802670. PubMed ID: 34987494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNP-Associated Substitutions of Amino Acid Residues in the dNTP Selection Subdomain Decrease Polβ Polymerase Activity.
    Kladova OA; Tyugashev TE; Miroshnikov AA; Novopashina DS; Kuznetsov NA; Kuznetsova AA
    Biomolecules; 2024 May; 14(5):. PubMed ID: 38785954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation sequencing reveals the biological significance of the N(2),3-ethenoguanine lesion in vivo.
    Chang SC; Fedeles BI; Wu J; Delaney JC; Li D; Zhao L; Christov PP; Yau E; Singh V; Jost M; Drennan CL; Marnett LJ; Rizzo CJ; Levine SS; Guengerich FP; Essigmann JM
    Nucleic Acids Res; 2015 Jun; 43(11):5489-500. PubMed ID: 25837992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles for mycobacterial DinB2 in frameshift and substitution mutagenesis.
    Dupuy P; Ghosh S; Fay A; Adefisayo O; Gupta R; Shuman S; Glickman MS
    Elife; 2023 May; 12():. PubMed ID: 37141254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of DNA Termini by the C-Terminal Region of the Ku80 and the DNA-Dependent Protein Kinase Catalytic Subunit.
    Woods DS; Sears CR; Turchi JJ
    PLoS One; 2015; 10(5):e0127321. PubMed ID: 25978375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair.
    Reid DA; Keegan S; Leo-Macias A; Watanabe G; Strande NT; Chang HH; Oksuz BA; Fenyo D; Lieber MR; Ramsden DA; Rothenberg E
    Proc Natl Acad Sci U S A; 2015 May; 112(20):E2575-84. PubMed ID: 25941401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ.
    Yousefzadeh MJ; Wyatt DW; Takata K; Mu Y; Hensley SC; Tomida J; Bylund GO; Doublié S; Johansson E; Ramsden DA; McBride KM; Wood RD
    PLoS Genet; 2014 Oct; 10(10):e1004654. PubMed ID: 25275444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair.
    Belov OV; Krasavin EA; Lyashko MS; Batmunkh M; Sweilam NH
    J Theor Biol; 2015 Feb; 366():115-30. PubMed ID: 25261728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of p53 in the repair of DNA double strand breaks: multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ).
    Menon V; Povirk L
    Subcell Biochem; 2014; 85():321-36. PubMed ID: 25201202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirements for 5'dRP/AP lyase activity in Ku.
    Strande NT; Carvajal-Garcia J; Hallett RA; Waters CA; Roberts SA; Strom C; Kuhlman B; Ramsden DA
    Nucleic Acids Res; 2014; 42(17):11136-43. PubMed ID: 25200085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response.
    Yoshimura A; Kobayashi Y; Tada S; Seki M; Enomoto T
    Biochem Biophys Res Commun; 2014 Sep; 452(1):48-52. PubMed ID: 25139235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members.
    Bienstock RJ; Beard WA; Wilson SH
    DNA Repair (Amst); 2014 Oct; 22():77-88. PubMed ID: 25112931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Catalytic Domains of DNA Polymerase λ: Influence on Enzyme Activity and Its Regulation.
    Maltseva EA; Rechkunova NI; Lavrik OI
    Dokl Biochem Biophys; 2023 Oct; 512(1):245-250. PubMed ID: 38093124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary diversity and novelty of DNA repair genes in asexual Bdelloid rotifers.
    Hecox-Lea BJ; Mark Welch DB
    BMC Evol Biol; 2018 Nov; 18(1):177. PubMed ID: 30486781
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.