These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 25108860)
1. A gas chromatography-mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk. Scano P; Murgia A; Pirisi FM; Caboni P J Dairy Sci; 2014 Oct; 97(10):6057-66. PubMed ID: 25108860 [TBL] [Abstract][Full Text] [Related]
2. A gas chromatography-mass spectrometry untargeted metabolomics approach to discriminate Fiore Sardo cheese produced from raw or thermized ovine milk. Caboni P; Maxia D; Scano P; Addis M; Dedola A; Pes M; Murgia A; Casula M; Profumo A; Pirisi A J Dairy Sci; 2019 Jun; 102(6):5005-5018. PubMed ID: 31005329 [TBL] [Abstract][Full Text] [Related]
3. Gas chromatography-mass spectrometry metabolomics of goat milk with different polymorphism at the αS1-casein genotype locus. Caboni P; Murgia A; Porcu A; Demuru M; Pulina G; Nudda A J Dairy Sci; 2016 Aug; 99(8):6046-6051. PubMed ID: 27289154 [TBL] [Abstract][Full Text] [Related]
4. A metabolomics approach to characterize raw, pasteurized, and ultra-high temperature milk using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and multivariate data analysis. Zhang YD; Li P; Zheng N; Jia ZW; Meruva N; Ladak A; Cleland G; Wen F; Li SL; Zhao SG; Wang JQ J Dairy Sci; 2018 Nov; 101(11):9630-9636. PubMed ID: 30172390 [TBL] [Abstract][Full Text] [Related]
6. Effects of the vat pasteurization process and refrigerated storage on the bovine milk metabolome. Zhu D; Kebede B; Chen G; McComb K; Frew R J Dairy Sci; 2020 Mar; 103(3):2077-2088. PubMed ID: 31980231 [TBL] [Abstract][Full Text] [Related]
7. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk. Yazgan NN; Genis HE; Bulat T; Topcu A; Durna S; Yetisemiyen A; Boyaci IH J Sci Food Agric; 2020 Oct; 100(13):4756-4765. PubMed ID: 32458436 [TBL] [Abstract][Full Text] [Related]
8. Applying quantitative metabolomics based on chemical isotope labeling LC-MS for detecting potential milk adulterant in human milk. Mung D; Li L Anal Chim Acta; 2018 Feb; 1001():78-85. PubMed ID: 29291809 [TBL] [Abstract][Full Text] [Related]
9. Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry. Chen RK; Chang LW; Chung YY; Lee MH; Ling YC Rapid Commun Mass Spectrom; 2004; 18(10):1167-71. PubMed ID: 15150843 [TBL] [Abstract][Full Text] [Related]
10. Identification of cow milk in goat milk by nonlinear chemical fingerprint technique. Ma YJ; Dong WB; Fan C; Wang ED J Food Drug Anal; 2017 Oct; 25(4):751-758. PubMed ID: 28987350 [TBL] [Abstract][Full Text] [Related]
11. Combined Metabolomic and NIRS Analyses Reveal Biochemical and Metabolite Changes in Goat Milk Kefir under Different Heat Treatments and Fermentation Times. Sánchez-Rodríguez R; Terriente-Palacios C; García-Olmo J; Osorio S; Rodríguez-Ortega MJ Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062530 [TBL] [Abstract][Full Text] [Related]
12. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk. Khan IT; Nadeem M; Imran M; Ayaz M; Ajmal M; Ellahi MY; Khalique A Lipids Health Dis; 2017 Aug; 16(1):163. PubMed ID: 28836975 [TBL] [Abstract][Full Text] [Related]
13. Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. Yang Y; Zheng N; Zhao X; Zhang Y; Han R; Yang J; Zhao S; Li S; Guo T; Zang C; Wang J J Proteomics; 2016 Mar; 136():174-82. PubMed ID: 26779989 [TBL] [Abstract][Full Text] [Related]
14. Triacylglycerol stereospecific analysis and linear discriminant analysis for milk speciation. Blasi F; Lombardi G; Damiani P; Simonetti MS; Giua L; Cossignani L J Dairy Res; 2013 May; 80(2):144-51. PubMed ID: 23186782 [TBL] [Abstract][Full Text] [Related]
15. A metabolomics comparison between sheep's and goat's milk. Caboni P; Murgia A; Porcu A; Manis C; Ibba I; Contu M; Scano P Food Res Int; 2019 May; 119():869-875. PubMed ID: 30884727 [TBL] [Abstract][Full Text] [Related]
16. Occurrence of aflatoxin M(1) in raw and market milk commercialized in Greece. Roussi V; Govaris A; Varagouli A; Botsoglou NA Food Addit Contam; 2002 Sep; 19(9):863-8. PubMed ID: 12396397 [TBL] [Abstract][Full Text] [Related]
17. Determination of estrogenic compounds in milk and yogurt samples by hollow-fibre liquid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. D'Orazio G; Hernández-Borges J; Herrera-Herrera AV; Fanali S; Rodríguez-Delgado MÁ Anal Bioanal Chem; 2016 Oct; 408(26):7447-59. PubMed ID: 27526090 [TBL] [Abstract][Full Text] [Related]
18. Quantitative analysis of cow whole milk and whey powder adulteration percentage in goat and sheep milk products by isotopic dilution-ultra-high performance liquid chromatography-tandem mass spectrometry. Ke X; Zhang J; Lai S; Chen Q; Zhang Y; Jiang Y; Mo W; Ren Y Anal Bioanal Chem; 2017 Jan; 409(1):213-224. PubMed ID: 27761616 [TBL] [Abstract][Full Text] [Related]
19. The application of NMR-based milk metabolite analysis in milk authenticity identification. Li Q; Yu Z; Zhu D; Meng X; Pang X; Liu Y; Frew R; Chen H; Chen G J Sci Food Agric; 2017 Jul; 97(9):2875-2882. PubMed ID: 27790701 [TBL] [Abstract][Full Text] [Related]