These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
570 related articles for article (PubMed ID: 25108868)
1. Diet effects on glucose absorption in the small intestine of neonatal calves: importance of intestinal mucosal growth, lactase activity, and glucose transporters. Steinhoff-Wagner J; Zitnan R; Schönhusen U; Pfannkuche H; Hudakova M; Metges CC; Hammon HM J Dairy Sci; 2014 Oct; 97(10):6358-69. PubMed ID: 25108868 [TBL] [Abstract][Full Text] [Related]
2. Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding. Steinhoff-Wagner J; Schönhusen U; Zitnan R; Hudakova M; Pfannkuche H; Hammon HM PLoS One; 2015; 10(5):e0128154. PubMed ID: 26011395 [TBL] [Abstract][Full Text] [Related]
3. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch. Lohrenz AK; Duske K; Schönhusen U; Losand B; Seyfert HM; Metges CC; Hammon HM J Dairy Sci; 2011 Sep; 94(9):4546-55. PubMed ID: 21854927 [TBL] [Abstract][Full Text] [Related]
4. Effects of ad libitum milk replacer feeding and butyrate supplementation on the epithelial growth and development of the gastrointestinal tract in Holstein calves. Koch C; Gerbert C; Frieten D; Dusel G; Eder K; Zitnan R; Hammon HM J Dairy Sci; 2019 Sep; 102(9):8513-8526. PubMed ID: 31255268 [TBL] [Abstract][Full Text] [Related]
5. Effects of feeding unlimited amounts of milk replacer for the first 5 weeks of age on rumen and small intestinal growth and development in dairy calves. Schäff CT; Gruse J; Maciej J; Pfuhl R; Zitnan R; Rajsky M; Hammon HM J Dairy Sci; 2018 Jan; 101(1):783-793. PubMed ID: 29055538 [TBL] [Abstract][Full Text] [Related]
6. Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves. Górka P; Pietrzak P; Kotunia A; Zabielski R; Kowalski ZM J Dairy Sci; 2014 Feb; 97(2):1026-35. PubMed ID: 24342681 [TBL] [Abstract][Full Text] [Related]
7. Transition milk stimulates intestinal development of neonatal Holstein calves. Van Soest B; Weber Nielsen M; Moeser AJ; Abuelo A; VandeHaar MJ J Dairy Sci; 2022 Aug; 105(8):7011-7022. PubMed ID: 35691749 [TBL] [Abstract][Full Text] [Related]
8. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption. Moran AW; Al-Rammahi M; Zhang C; Bravo D; Calsamiglia S; Shirazi-Beechey SP J Dairy Sci; 2014; 97(8):4955-72. PubMed ID: 24881785 [TBL] [Abstract][Full Text] [Related]
9. Effects of colostrum versus formula feeding on hepatic glucocorticoid and α₁- and β₂-adrenergic receptors in neonatal calves and their effect on glucose and lipid metabolism. Schäff CT; Rohrbeck D; Steinhoff-Wagner J; Kanitz E; Sauerwein H; Bruckmaier RM; Hammon HM J Dairy Sci; 2014 Oct; 97(10):6344-57. PubMed ID: 25108854 [TBL] [Abstract][Full Text] [Related]
10. Short communication: Effect of delaying the first colostrum feeding on small intestinal histomorphology and serum insulin-like growth factor-1 concentrations in neonatal male Holstein calves. Fischer-Tlustos AJ; Pyo J; Song Y; Renaud DL; Guan LL; Steele MA J Dairy Sci; 2020 Dec; 103(12):12109-12116. PubMed ID: 33041024 [TBL] [Abstract][Full Text] [Related]
11. Effects of feeding vitamin A and lactoferrin on epithelium of lymphoid tissues of intestine of neonatal calves. Schottstedt T; Muri C; Morel C; Philipona C; Hammon HM; Blum JW J Dairy Sci; 2005 Mar; 88(3):1050-61. PubMed ID: 15738240 [TBL] [Abstract][Full Text] [Related]
12. Influence of dietary fructose supplementation on visceral organ mass, carbohydrase activity, and mRNA expression of genes involved in small intestinal carbohydrate assimilation in neonatal calves. Trotta RJ; Ward AK; Swanson KC J Dairy Sci; 2020 Nov; 103(11):10060-10073. PubMed ID: 32921447 [TBL] [Abstract][Full Text] [Related]
13. Glucose transporters in the small intestine in health and disease. Koepsell H Pflugers Arch; 2020 Sep; 472(9):1207-1248. PubMed ID: 32829466 [TBL] [Abstract][Full Text] [Related]
14. Colostrum quality affects immune system establishment and intestinal development of neonatal calves. Yang M; Zou Y; Wu ZH; Li SL; Cao ZJ J Dairy Sci; 2015 Oct; 98(10):7153-63. PubMed ID: 26233454 [TBL] [Abstract][Full Text] [Related]
15. Effects of maternal over- and undernutrition on intestinal morphology, enzyme activity, and gene expression of nutrient transporters in newborn and weaned pigs. Cao M; Che L; Wang J; Yang M; Su G; Fang Z; Lin Y; Xu S; Wu D Nutrition; 2014; 30(11-12):1442-7. PubMed ID: 25280425 [TBL] [Abstract][Full Text] [Related]
16. Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate. Moran AW; Al-Rammahi MA; Arora DK; Batchelor DJ; Coulter EA; Ionescu C; Bravo D; Shirazi-Beechey SP Br J Nutr; 2010 Sep; 104(5):647-55. PubMed ID: 20385036 [TBL] [Abstract][Full Text] [Related]
17. Feeding colostrum, its composition and feeding duration variably modify proliferation and morphology of the intestine and digestive enzyme activities of neonatal calves. Blättler U; Hammon HM; Morel C; Philipona C; Rauprich A; Romé V; Le Huërou-Luron I; Guilloteau P; Blum JW J Nutr; 2001 Apr; 131(4):1256-63. PubMed ID: 11285335 [TBL] [Abstract][Full Text] [Related]
18. Insulin-like growth factor and insulin receptors in intestinal mucosa of neonatal calves. Georgiev IP; Georgieva TM; Pfaffl M; Hammon HM; Blum JW J Endocrinol; 2003 Jan; 176(1):121-32. PubMed ID: 12525256 [TBL] [Abstract][Full Text] [Related]
19. Jejunal mucosal lactase activity from birth to three weeks in conventionally raised calves fed an electrolyte solution on days 5, 6 and 7 instead of milk. St Jean GD; Schmall LM; Rings DM; Hoffsis GF; Hull BL Can J Vet Res; 1991 Jan; 55(1):86-8. PubMed ID: 1909207 [TBL] [Abstract][Full Text] [Related]
20. Transepithelial transport of glucose and mRNA of glucose transporters in the small intestine of rats with iron-deficiency anemia. Chang Wayhs ML; de Morais MB; Machado UF; Nassar SM; Neto UF; Silvério Amâncio OM Nutrition; 2011 Jan; 27(1):111-115. PubMed ID: 21146130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]