These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25108914)

  • 1. SpeedyGenes: an improved gene synthesis method for the efficient production of error-corrected, synthetic protein libraries for directed evolution.
    Currin A; Swainston N; Day PJ; Kell DB
    Protein Eng Des Sel; 2014 Sep; 27(9):273-80. PubMed ID: 25108914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpeedyGenes: Exploiting an Improved Gene Synthesis Method for the Efficient Production of Synthetic Protein Libraries for Directed Evolution.
    Currin A; Swainston N; Day PJ; Kell DB
    Methods Mol Biol; 2017; 1472():63-78. PubMed ID: 27671932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and Flexible Synthesis of Combinatorial Libraries for Directed Evolution.
    Sadler JC; Green L; Swainston N; Kell DB; Currin A
    Methods Enzymol; 2018; 608():59-79. PubMed ID: 30173773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpeedyGenesXL: an Automated, High-Throughput Platform for the Preparation of Bespoke Ultralarge Variant Libraries for Directed Evolution.
    Sadler JC; Swainston N; Dunstan MS; Currin A; Kell DB
    Methods Mol Biol; 2022; 2461():67-83. PubMed ID: 35727444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic gene libraries: in search of the optimal diversity.
    Ostermeier M
    Trends Biotechnol; 2003 Jun; 21(6):244-7. PubMed ID: 12788541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries.
    Currin A; Kwok J; Sadler JC; Bell EL; Swainston N; Ababi M; Day P; Turner NJ; Kell DB
    ACS Synth Biol; 2019 Jun; 8(6):1371-1378. PubMed ID: 31132850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error-prone PCR and effective generation of gene variant libraries for directed evolution.
    Copp JN; Hanson-Manful P; Ackerley DF; Patrick WM
    Methods Mol Biol; 2014; 1179():3-22. PubMed ID: 25055767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Use of a Novel Random Mutagenesis Method: In Situ Error-Prone PCR (is-epPCR).
    Shao W; Ma K; Le Y; Wang H; Sha C
    Methods Mol Biol; 2017; 1498():497-506. PubMed ID: 27709598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity.
    van der Veen BA; Potocki-Véronèse G; Albenne C; Joucla G; Monsan P; Remaud-Simeon M
    FEBS Lett; 2004 Feb; 560(1-3):91-7. PubMed ID: 14988004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polishing the craft of genetic diversity creation in directed evolution.
    Tee KL; Wong TS
    Biotechnol Adv; 2013 Dec; 31(8):1707-21. PubMed ID: 24012599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and analysis of randomized protein-encoding libraries using error-prone PCR.
    Hanson-Manful P; Patrick WM
    Methods Mol Biol; 2013; 996():251-67. PubMed ID: 23504429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating targeted libraries by the combinatorial incorporation of synthetic oligonucleotides during gene shuffling (ISOR).
    Rockah-Shmuel L; Tawfik DS; Goldsmith M
    Methods Mol Biol; 2014; 1179():129-37. PubMed ID: 25055774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR.
    Le Y; Chen H; Zagursky R; Wu JH; Shao W
    DNA Res; 2013 Aug; 20(4):375-82. PubMed ID: 23633530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutant library construction in directed molecular evolution: casting a wider net.
    Wang TW; Zhu H; Ma XY; Zhang T; Ma YS; Wei DZ
    Mol Biotechnol; 2006 Sep; 34(1):55-68. PubMed ID: 16943572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GeneGenie: optimized oligomer design for directed evolution.
    Swainston N; Currin A; Day PJ; Kell DB
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W395-400. PubMed ID: 24782527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical teaching course in directed protein evolution using the green fluorescent protein as a model.
    Ruller R; Silva-Rocha R; Silva A; Cruz Schneider MP; Ward RJ
    Biochem Mol Biol Educ; 2011; 39(1):21-7. PubMed ID: 21433249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speeding up directed evolution: Combining the advantages of solid-phase combinatorial gene synthesis with statistically guided reduction of screening effort.
    Hoebenreich S; Zilly FE; Acevedo-Rocha CG; Zilly M; Reetz MT
    ACS Synth Biol; 2015 Mar; 4(3):317-31. PubMed ID: 24921161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial Evolution of DNA with RECODE.
    Kang Z; Ding W; Jin P; Du G; Chen J
    Methods Mol Biol; 2018; 1772():205-212. PubMed ID: 29754230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of designed oligonucleotides as an efficient method for gene recombination: a new tool in directed evolution.
    Zha D; Eipper A; Reetz MT
    Chembiochem; 2003 Jan; 4(1):34-9. PubMed ID: 12512074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-high throughput functional enrichment of large monoamine oxidase (MAO-N) libraries by fluorescence activated cell sorting.
    Sadler JC; Currin A; Kell DB
    Analyst; 2018 Sep; 143(19):4747-4755. PubMed ID: 30199078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.