These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 25109264)
21. High-Saturated Fat High-Sugar Diet Accelerates Left-Ventricular Dysfunction Faster than High-Saturated Fat Diet Alone via Increasing Oxidative Stress and Apoptosis in Obese-Insulin Resistant Rats. Apaijai N; Arinno A; Palee S; Pratchayasakul W; Kerdphoo S; Jaiwongkam T; Chunchai T; Chattipakorn SC; Chattipakorn N Mol Nutr Food Res; 2019 Jan; 63(2):e1800729. PubMed ID: 30411851 [TBL] [Abstract][Full Text] [Related]
22. Estimation of the hydrogen peroxide producing capacities of liver and cardiac mitochondria isolated from C57BL/6N and C57BL/6J mice. Oldford C; Kuksal N; Gill R; Young A; Mailloux RJ Free Radic Biol Med; 2019 May; 135():15-27. PubMed ID: 30794944 [TBL] [Abstract][Full Text] [Related]
23. High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart. Emelyanova L; Boukatina A; Myers C; Oyarzo J; Lustgarten J; Shi Y; Jahangir A PLoS One; 2019; 14(7):e0217045. PubMed ID: 31265457 [TBL] [Abstract][Full Text] [Related]
24. Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling. Rindler PM; Cacciola A; Kinter M; Szweda LI Am J Physiol Heart Circ Physiol; 2016 Nov; 311(5):H1091-H1096. PubMed ID: 27614223 [TBL] [Abstract][Full Text] [Related]
25. Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction. Jeong EM; Chung J; Liu H; Go Y; Gladstein S; Farzaneh-Far A; Lewandowski ED; Dudley SC J Am Heart Assoc; 2016 May; 5(5):. PubMed ID: 27151515 [TBL] [Abstract][Full Text] [Related]
26. Does reversible cysteine oxidation link the Western diet to cardiac dysfunction? Behring JB; Kumar V; Whelan SA; Chauhan P; Siwik DA; Costello CE; Colucci WS; Cohen RA; McComb ME; Bachschmid MM FASEB J; 2014 May; 28(5):1975-87. PubMed ID: 24469991 [TBL] [Abstract][Full Text] [Related]
27. Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. Garcia J; Han D; Sancheti H; Yap LP; Kaplowitz N; Cadenas E J Biol Chem; 2010 Dec; 285(51):39646-54. PubMed ID: 20937819 [TBL] [Abstract][Full Text] [Related]
28. Examining a role for PKG Iα oxidation in the pathogenesis of cardiovascular dysfunction during diet-induced obesity. Rudyk O; Eaton P Free Radic Biol Med; 2017 Sep; 110():390-398. PubMed ID: 28690194 [TBL] [Abstract][Full Text] [Related]
29. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Redout EM; Wagner MJ; Zuidwijk MJ; Boer C; Musters RJ; van Hardeveld C; Paulus WJ; Simonides WS Cardiovasc Res; 2007 Sep; 75(4):770-81. PubMed ID: 17582388 [TBL] [Abstract][Full Text] [Related]
30. Hepatic Mitochondrial Defects in a Nonalcoholic Fatty Liver Disease Mouse Model Are Associated with Increased Degradation of Oxidative Phosphorylation Subunits. Lee K; Haddad A; Osme A; Kim C; Borzou A; Ilchenko S; Allende D; Dasarathy S; McCullough A; Sadygov RG; Kasumov T Mol Cell Proteomics; 2018 Dec; 17(12):2371-2386. PubMed ID: 30171159 [TBL] [Abstract][Full Text] [Related]
31. Cystine reduces mitochondrial dysfunction in C2C12 myotubes under moderate oxidative stress induced by H Mizugaki A; Kato H; Takeda T; Inoue Y; Hasumura M; Hasegawa T; Murakami H Amino Acids; 2022 Aug; 54(8):1203-1213. PubMed ID: 35715620 [TBL] [Abstract][Full Text] [Related]
32. High Fat Diet-Induced Obesity Dysregulates Splenic B Cell Mitochondrial Activity. Pal A; Lin CT; Boykov I; Benson E; Kidd G; Fisher-Wellman KH; Neufer PD; Shaikh SR Nutrients; 2023 Nov; 15(22):. PubMed ID: 38004202 [TBL] [Abstract][Full Text] [Related]
33. TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Ma T; Lin S; Wang B; Wang Q; Xia W; Zhang H; Cui Y; He C; Wu H; Sun F; Zhao Z; Gao P; Zhu Z; Liu D Biochem Biophys Res Commun; 2019 Nov; 519(4):674-681. PubMed ID: 31543348 [TBL] [Abstract][Full Text] [Related]
34. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart. Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709 [TBL] [Abstract][Full Text] [Related]
36. Early mitochondrial adaptations in skeletal muscle to diet-induced obesity are strain dependent and determine oxidative stress and energy expenditure but not insulin sensitivity. Boudina S; Sena S; Sloan C; Tebbi A; Han YH; O'Neill BT; Cooksey RC; Jones D; Holland WL; McClain DA; Abel ED Endocrinology; 2012 Jun; 153(6):2677-88. PubMed ID: 22510273 [TBL] [Abstract][Full Text] [Related]
37. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Bugger H; Boudina S; Hu XX; Tuinei J; Zaha VG; Theobald HA; Yun UJ; McQueen AP; Wayment B; Litwin SE; Abel ED Diabetes; 2008 Nov; 57(11):2924-32. PubMed ID: 18678617 [TBL] [Abstract][Full Text] [Related]
38. Role of Arginase 2 in Systemic Metabolic Activity and Adipose Tissue Fatty Acid Metabolism in Diet-Induced Obese Mice. Atawia RT; Toque HA; Meghil MM; Benson TW; Yiew NKH; Cutler CW; Weintraub NL; Caldwell RB; Caldwell RW Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30909461 [TBL] [Abstract][Full Text] [Related]
39. Activity-based protein profiling reveals mitochondrial oxidative enzyme impairment and restoration in diet-induced obese mice. Sadler NC; Angel TE; Lewis MP; Pederson LM; Chauvigné-Hines LM; Wiedner SD; Zink EM; Smith RD; Wright AT PLoS One; 2012; 7(10):e47996. PubMed ID: 23110155 [TBL] [Abstract][Full Text] [Related]
40. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Zhu SC; Chen C; Wu YN; Ahmed M; Kitmitto A; Greenstein AS; Kim SJ; Shao YF; Zhang YH Pflugers Arch; 2020 Mar; 472(3):367-374. PubMed ID: 32078030 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]