BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25109458)

  • 1. Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites.
    Munarin F; Petrini P; Gentilini R; Pillai RS; Dirè S; Tanzi MC; Sglavo VM
    Int J Biol Macromol; 2015 Jan; 72():199-209. PubMed ID: 25109458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive hydroxyapatite fillers for pectin biocomposites.
    Munarin F; Petrini P; Barcellona G; Roversi T; Piazza L; Visai L; Tanzi MC
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():154-61. PubMed ID: 25491814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal.
    Catori DM; Fragal EH; Messias I; Garcia FP; Nakamura CV; Rubira AF
    Int J Biol Macromol; 2021 Jan; 167():726-735. PubMed ID: 33285200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties.
    Moreira HR; Munarin F; Gentilini R; Visai L; Granja PL; Tanzi MC; Petrini P
    Carbohydr Polym; 2014 Mar; 103():339-47. PubMed ID: 24528738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin-laponite-CTAB-calcium nanocomposite hydrogels.
    Joshi N; Rawat K; Bohidar HB
    Carbohydr Polym; 2016 Jan; 136():242-9. PubMed ID: 26572352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.
    Mohamed KR; Beherei HH; El Bassyouni GT; El Mahallawy N
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4126-32. PubMed ID: 23910323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite.
    Dasgupta S; Tarafder S; Bandyopadhyay A; Bose S
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2846-54. PubMed ID: 23623105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the microstructure of biocomposites sintered from Ti, HA and bioactive glass.
    Ning CQ; Zhou Y
    Biomaterials; 2004 Aug; 25(17):3379-87. PubMed ID: 15020110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(N-isopropylacrylamide)-hydroxyapatite nanocomposites as thermoresponsive filling materials on dentinal surface and tubules.
    Tempesti P; Nicotera GS; Bonini M; Fratini E; Baglioni P
    J Colloid Interface Sci; 2018 Jan; 509():123-131. PubMed ID: 28898732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of grafted nanohydroxyapatites using functionalized surface agents.
    Haque S; Rehman I; Darr JA
    Langmuir; 2007 Jun; 23(12):6671-6. PubMed ID: 17480106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites.
    Farzin A; Ahmadian M; Fathi MH
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2251-7. PubMed ID: 23498255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pectin-non-starch nanofibers biocomposites as novel gastrointestinal-resistant prebiotics.
    Khorasani AC; Shojaosadati SA
    Int J Biol Macromol; 2017 Jan; 94(Pt A):131-144. PubMed ID: 27720960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders.
    Knowles JC; Callcut S; Georgiou G
    Biomaterials; 2000 Jul; 21(13):1387-92. PubMed ID: 10850933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.
    Fu S; Guo G; Gong C; Zeng S; Liang H; Luo F; Zhang X; Zhao X; Wei Y; Qian Z
    J Phys Chem B; 2009 Dec; 113(52):16518-25. PubMed ID: 19947637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sintering behaviour of hydroxyapatite bioceramics.
    Ramesh S; Tan CY; Aw KL; Yeo WH; Hamdi M; Sopyan I; Teng WD
    Med J Malaysia; 2008 Jul; 63 Suppl A():89-90. PubMed ID: 19024998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites.
    Joseph R; McGregor WJ; Martyn MT; Tanner KE; Coates PD
    Biomaterials; 2002 Nov; 23(21):4295-302. PubMed ID: 12194532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion.
    Sato M; Aslani A; Sambito MA; Kalkhoran NM; Slamovich EB; Webster TJ
    J Biomed Mater Res A; 2008 Jan; 84(1):265-72. PubMed ID: 17607739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites.
    Bareiro O; Santos LA
    Colloids Surf B Biointerfaces; 2014 Mar; 115():400-5. PubMed ID: 24503294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pinus residue/pectin-based composite hydrogels for the immobilization of β-D-galactosidase.
    Cargnin MA; de Souza AG; de Lima GF; Gasparin BC; Rosa DDS; Paulino AT
    Int J Biol Macromol; 2020 Apr; 149():773-782. PubMed ID: 32006584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.