BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25109458)

  • 21. Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering.
    Xie X; Hu K; Fang D; Shang L; Tran SD; Cerruti M
    Nanoscale; 2015 May; 7(17):7992-8002. PubMed ID: 25864935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process.
    Rezaei A; Mohammadi MR
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):390-6. PubMed ID: 25428086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior.
    Lin G; Cosimbescu L; Karin NJ; Tarasevich BJ
    Biomed Mater; 2012 Apr; 7(2):024107. PubMed ID: 22456931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and characterization of nano-hydroxyapatite within chitosan matrix.
    Rogina A; Ivanković M; Ivanković H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4539-44. PubMed ID: 24094157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L; Leng Y; Gao P
    Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation.
    Abitbol T; Mijlkovic A; Malafronte L; Stevanic JS; Larsson PT; Lopez-Sanchez P
    Carbohydr Polym; 2021 May; 260():117345. PubMed ID: 33712116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic acetal hydroxyapatite nanocomposites for orbital bone regeneration.
    Patel M; Betz MW; Geibel E; Patel KJ; Caccamese JF; Coletti DP; Sauk JJ; Fisher JP
    Tissue Eng Part A; 2010 Jan; 16(1):55-65. PubMed ID: 19614544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium.
    Sato M; Sambito MA; Aslani A; Kalkhoran NM; Slamovich EB; Webster TJ
    Biomaterials; 2006 Apr; 27(11):2358-69. PubMed ID: 16337679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and characterization of selenite substituted hydroxyapatite.
    Ma J; Wang Y; Zhou L; Zhang S
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):440-5. PubMed ID: 25428093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface nanocrystallization of hydroxyapatite coating.
    Lu YP; Chen YM; Li ST; Wang JH
    Acta Biomater; 2008 Nov; 4(6):1865-72. PubMed ID: 18567551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.
    Khor KA; Gu YW; Pan D; Cheang P
    Biomaterials; 2004 Aug; 25(18):4009-17. PubMed ID: 15046891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation.
    Dimitrievska S; Bureau MN; Antoniou J; Mwale F; Petit A; Lima RS; Marple BR
    J Biomed Mater Res A; 2011 Sep; 98(4):576-88. PubMed ID: 21702080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pectin as a rheology modifier: Origin, structure, commercial production and rheology.
    Chan SY; Choo WS; Young DJ; Loh XJ
    Carbohydr Polym; 2017 Apr; 161():118-139. PubMed ID: 28189220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of xanthan-hydroxyapatite nanocomposites for cellular uptake.
    Bueno VB; Bentini R; Catalani LH; Barbosa LR; Petri DF
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():195-203. PubMed ID: 24582240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and evaluation of collagen-chitosan-hydroxyapatite nanocomposites for bone grafting.
    Wang X; Wang X; Tan Y; Zhang B; Gu Z; Li X
    J Biomed Mater Res A; 2009 Jun; 89(4):1079-87. PubMed ID: 18478560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ion adsorption behaviour of hydroxyapatite with different crystallinities.
    Stötzel C; Müller FA; Reinert F; Niederdraenk F; Barralet JE; Gbureck U
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):91-5. PubMed ID: 19640688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering.
    Patel M; Patel KJ; Caccamese JF; Coletti DP; Sauk JJ; Fisher JP
    J Biomed Mater Res A; 2010 Aug; 94(2):408-18. PubMed ID: 20186741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation.
    Cai L; Guinn AS; Wang S
    Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method.
    Padilla S; Sánchez-Salcedo S; Vallet-Regí M
    J Biomed Mater Res A; 2005 Oct; 75(1):63-72. PubMed ID: 16088904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of high energy electron beam (10MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite.
    Soltani Z; Ziaie F; Ghaffari M; Beigzadeh AM
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():791-796. PubMed ID: 27987774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.