BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 25109612)

  • 21. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.
    Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S
    Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI.
    Chen C; Wang S; Li L; Wang P; Chen C; Sun Z; Song T
    Biomaterials; 2016 Oct; 104():352-60. PubMed ID: 27487574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy.
    Yang K; Yang G; Chen L; Cheng L; Wang L; Ge C; Liu Z
    Biomaterials; 2015 Jan; 38():1-9. PubMed ID: 25457978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy.
    Zhang M; Cao Y; Wang L; Ma Y; Tu X; Zhang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4650-8. PubMed ID: 25672225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-step synthesis of gradient gadolinium ironhexacyanoferrate nanoparticles: a new particle design easily combining MRI contrast and photothermal therapy.
    Li Y; Li CH; Talham DR
    Nanoscale; 2015 Mar; 7(12):5209-16. PubMed ID: 25706057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetically-targeted and near infrared fluorescence/magnetic resonance/photoacoustic imaging-guided combinational anti-tumor phototherapy based on polydopamine-capped magnetic Prussian blue nanoparticles.
    Wang Y; Pang X; Wang J; Cheng Y; Song Y; Sun Q; You Q; Tan F; Li J; Li N
    J Mater Chem B; 2018 Apr; 6(16):2460-2473. PubMed ID: 32254463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photothermal effects of NaYF
    Wang X; Kang C; Pan Y; Jiang R
    Int J Nanomedicine; 2019; 14():4319-4331. PubMed ID: 31354263
    [No Abstract]   [Full Text] [Related]  

  • 28. [Mn
    He G; Tao Q; Liu C; Zhang D; Zhou Y; Liu R
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jun; 41(6):909-915. PubMed ID: 34238744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation.
    Shen S; Wang S; Zheng R; Zhu X; Jiang X; Fu D; Yang W
    Biomaterials; 2015 Jan; 39():67-74. PubMed ID: 25477173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation.
    Sohn CH; Park SP; Choi SH; Park SH; Kim S; Xu L; Kim SH; Hur JA; Choi J; Choi TH
    Nanomedicine; 2015 Jan; 11(1):127-35. PubMed ID: 25168935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation.
    Shen S; Kong F; Guo X; Wu L; Shen H; Xie M; Wang X; Jin Y; Ge Y
    Nanoscale; 2013 Sep; 5(17):8056-66. PubMed ID: 23873020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia.
    Barick KC; Singh S; Bahadur D; Lawande MA; Patkar DP; Hassan PA
    J Colloid Interface Sci; 2014 Mar; 418():120-5. PubMed ID: 24461826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prussian Blue Modified PLA Microcapsules Containing R6G for Ultrasonic/Fluorescent Bimodal Imaging Guided Photothermal Tumor Therapy.
    Feng S; Wang J; Ma F; Liang X; Li X; Xing S; Yue X
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2184-93. PubMed ID: 27455617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy.
    Fu G; Liu W; Feng S; Yue X
    Chem Commun (Camb); 2012 Dec; 48(94):11567-9. PubMed ID: 23090583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly cross-linked and biocompatible polyphosphazene-coated superparamagnetic Fe3O4 nanoparticles for magnetic resonance imaging.
    Hu Y; Meng L; Niu L; Lu Q
    Langmuir; 2013 Jul; 29(29):9156-63. PubMed ID: 23795597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fullerene-based multi-functional nanoplatform for cancer theranostic applications.
    Shi J; Wang L; Gao J; Liu Y; Zhang J; Ma R; Liu R; Zhang Z
    Biomaterials; 2014 Jul; 35(22):5771-84. PubMed ID: 24746227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells.
    Liao Z; Wang H; Lv R; Zhao P; Sun X; Wang S; Su W; Niu R; Chang J
    Langmuir; 2011 Mar; 27(6):3100-5. PubMed ID: 21341768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria.
    Lai BH; Chen DH
    Acta Biomater; 2013 Jul; 9(7):7573-9. PubMed ID: 23535232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prussian Blue Nanoparticles as a Versatile Photothermal Tool.
    Dacarro G; Taglietti A; Pallavicini P
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29891819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tailored ultra-small Prussian blue-based nanoparticles for MRI imaging and combined photothermal/photoacoustic theranostics.
    Fétiveau L; Paul G; Nicolas-Boluda A; Volatron J; George R; Laurent S; Muller R; Sancey L; Mejanelle P; Gloter A; Gazeau F; Catala L
    Chem Commun (Camb); 2019 Dec; 55(98):14844-14847. PubMed ID: 31768507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.